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ABSTRACT

RADIAL INSTABILITIES OF A PULSATING

AIR BUBBLE IN WATER

HORSBURGH, STEVEN DEWITT. B. S. , University of Mississippi, 1983.

M.S. , University of Mississippi, 1984. Ph. D. , University of

Mississippi 1990. Dissertation directed by Dr. Lawrence C. Crum.

Recently, several theoretical studies have been originated concerning the

spherical stability of a pulsating air bubble in water. In this study, a light

scattering technique was utilized to "photograph" in real-time the motion of

the bubble surface. The main objective was to experimentally determine the

shape oscillation threshold of an acoustically driven air bubble in water.

These thresholds were defined as the minimum pressure necessary to

drive a bubble, at a particular radius, into non-radial motion. The results

of this study show a marked improvement over previous experiments in

detecting the radial instabilities resulting in shape oscillation. Further, by

using a numerical integration technique applied to a simplified theory, the

experimental shape oscillation thresholds were predicted quite well.
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Introduction

Recently, several theoretical studies have been originated concerning the

spherical stability of a pulsating air bubble in water. One of the earliest

studies was done by Taylor (1950) who discussed the stability of a plane

interface between two fluids of different densities undergoing an

accelerated motion. Plesset (1954) extended Taylor's argument to describe

the spherical stability of the motion of two immiscible, incompressible,

inviscid fluids. A first order perturbation technique was used to describe

the deviation from spherical symmetry based on a linearization of the

radial motion of the bubble. Eller and Crum (1970) went further in

describing the radial motion of the bubble by using a polytropic formulation

of the Rayleigh-Plesset equation for inviscid liquids. They derived an

analytical solution to the instability problem by using a third order

expansion solution to the radial equation and by expressing the motion of

the bubble surface as a perturbation to the spherical shape (i.e., r = rs(O,O,t)
00

= R(t)+ -an(t)Yn(0,0) ). A description of their analytical solution and
n=2

results will be given later. Prosperetti (1977) extended this formulation to

include viscous effects. He assumed that the radial motion could be

expressed as a superposition of spherical harmonics. Thus the motion of

1
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the bubble surface could be expressed as: r - R(t) - ea(t)Ynm(0,) = 0, with 0,

£- 1. By expressing the velocity and pressure fields as sums of radial,

potential, and viscous terms, Prosperetti was able to derive the equations of

motion which included a radial equation and a shape distortion equation

which represented the deviation from spherical symmetry. In this work, a

procedure similar to Prosperetti's will be used with an additional

irrotational flow restriction on the motion of a pulsating air bubble in water.

Experimental observations have shown that a pulsating air bubble in water

will exhibit a radial instability (shape oscillation) threshold (Eller and

Crum, 1970). The threshold is such that if the bubble's equilibrium radius

remains constant and the driving pressure is increased, or if the driving

pressure remains constant and the bubble's equilibrium radius changes,

then there exists a sharp demarcation between regions where any

perturbation to the bubble's spherical shape will grow and where the

perturbation will quickly damp out.

Previous experimental observations of radial instability thresholds of a

driven air bubble in water have been made both by Gould (1974) and by Eller

and Crum (1970). In these observations, the thresholds were defined by the

appearance of a "dancing" motion of the bubble. While the bubble was

clearly exhibiting non-spherical motion at this "dancing" threshold, the

radial instability threshold had occurred at a different point. The
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"dancing" threshold criterion only allowed for nonstable shape oscillations

in which there was significant motion of the center of mass of the bubble.

In this study, a light scattering technique was utilized to "photograph" in

real-time the motion of the bubble surface. The main objective was to

experimentally determine the shape oscillation threshold of an acoustically

driven air bubble in water. These thresholds were defined as the minimum

pressure necessary to drive a bubble, at a particular radius, into non-radial

motion. To accomplish this, a single air bubble was acoustically levitated in

a cell containing filtered water, a laser beam illuminated the bubble and the

scattered light was detected by fast silicon photodiode detectors. Ordinary

photography using a microscope and stroboscopic techniques was deemed

insufficient to obtain radius vs. time curves to describe the motion of the

bubble.

The results of this study show a marked improvement over previous

experiments in detecting the radial instabilities resulting in shape

oscillation. Further, by using a numerical integration technique applied to

a simplified theory, the experimental shape oscillation thresholds were

predicted quite well. In addition, the frequencies of the shape oscillations

agree quantitatively over the range of bubble radii used (-10-100 microns,

driven below resonance radius at 22.22 kHz).
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This dissertation essentially contains three main sections: Theoretical

Development and Discussion, Analytical and Numerical Solutions to the

Theoretical Problem, and Experimental Results and Discussion. Each

section is basically self contained, in that they need not be read in the order

presented, although it is assumed that an orderly progression through the

entire dissertation would be the common approach. There are, however,

comparisons between sections, especially between the theoretical and

experimental results.

The material is presented in the following sequence. First, a simple

development of the Navier-Stokes equation is given in Chapter II. Next, in

Chapter III, the equations of motion for a driven, pulsating air bubble in

water are derived and simplifying assumptions are given to arrive at a set

of two coupled, non-linear, second-order differential equations that describe

the volume pulsations and shape distortions exhibited by a bubble. Chapter

IV presents an analytical solution to the equations derived in Chapter III.

The analytical solution decouples the equations by assuming a functional

form for the bubble's radius as a function of time. This functional form is

then inserted into the shape distortion equation which is solved in terms of

spherical harmonics. Chapter V directly solves the equations in Chapter

III by numerical integration. Chapters IV and V introduce the idea of a

shape oscillation threshold (i.e., a radial instability threshold), and

graphically present the shape oscillation thresholds as driving pressure vs.

the equilibrium bubble radius. Chapter VI is a theoretical and



5

experimental description of the phenomenon of Mie scattering. The

theoretical derivation of the scattering amplitudes associated with Mie

scattering is the next logical step, but because of its complicated nature and

relative importance, this derivation is regulated to Appendix B. Chapter

VII details the experimental apparatus. Chapter VIII is the focal point of

this dissertation. The other chapters lay groundwork and definitions for

this experimental discussion chapter. First, the experimental methods are

outlined, then a discussion of related experimental observations are given,

and finally the experimental results are presented. Lastly, in Chapter IX,

a summary of important points, a list of the major contributions, and a

conclusion are given.



Formulation of the Problem

We will consider the problem of an interface separating two immiscible,

viscous liquids of differing densities. Following a procedure similar to

Morse and Ingard's (1986) approach we begin as follows. Assume that the

velocity of the interface is a function of position and time:

u = u(r,t). (1.1)

In general a continuity equation can be expressed in terms of a tensor flux

as

df
t+Vol = F ,(1.2)

where f is some physical property, F is a source of f, and I=B+T is a tensor

which is the sum of the stress tensor (B) and the momentum flux tensor

(T). If we let f = pu, the momentum per unit volume of the fluid, where p is

the liquid density, and F = -V(po) be some external force such as gravity,

where 0 is some potential function, then Eq. (1.2) can be written as

6
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d(pu)
dt + V(B+T) = -V(pO) , (1.3)

where

Pxx PxY Pxz I n F PUxUx PUxUy Puxuz1

B- Pyx Pyy Pyz Iad T- PUyUx PUyUy PUyUz . (1.4)
PZX PZY PZZ PUzUx Puzuy Puzuz

From Eq. (1.4), we see that T may be expressed as

V*T=uV*(pu)+p(u*V)u . (1.5a)

Noting that by definition:

d(pu) Ou
- Du- uVo(pu) (1.5b)

we see that Eq. (1.3) becomes

dup--= -V(pO) - V*B (1.6)

For inviscid liquids the stress tensor is simply

B [ P 0 (1.7)
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where P is the pressure in the liquid. In general, the stress tensor, B, is

written as

B=P- 2 9) u g• V 18

(1,11.8

where

Aij = ij (VU)ij = (uV)ij -ui= xi = (.9

Here . - coefficient of shear viscosity and r = coefficient of bulk viscosity.

Using the relations

[V*(uV)j = [V(V*u)]j (1.10)

and

[V*(Vu)]j = V2uj = [V(Vou)]j - [Vx(Vxu)]j , (1.11)

we find that

_*B 2 )Vo} -'[Vu + UV)(V.B = Vol P-q ) - V*[(u+u) (1.12)
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= VP - _ -- )Vou - (gV2 u) - (gV*uV)

=VP-V O)u+ LVXVxU

so that the continuity equation Eq. (1.6) becomes

du Vr4)Vu.(13p-= -V(pO) - [VP - V(l+4 + VxVxu])

Rearranging the terms in Eq. (1.13) we obtain the Navier-Stokes equation of

the motion of a viscous, compressible fluid.

!" = - P + pO - (Tl+4 )Vou - iiVxVxu. (1.14)

Next, using the relations:

VXVxu V(V*u) - V2 u , (1.15)

and

du au
-=" + (u*V)u, (1.16)

dt-at

Eq. (1.14) becomes
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p[-+ (u.V)u] =. P+p-(Tl+p.)Vou - FV(Vu) + j±V2 u , (1.17)

or

[a + (uoV)u] = -V(P+pO) -V(T1+5L)Vou + gV 2u . (1.18)

The mass continuity equation may be written as:

apa- + V *(PU) = 0 (1.19)

If we assume that the density is essentially constant in space and time,

then Eqs. (1.18) and (1.19) become

p + (uV)u] = - VP - pV¢ + V(i + 3-)Veu + gV2u , (1.20)

and

VOu = 0. (1.21)

Combining Eqs. (1.20) and (1.21) we have



U

pl + (U.V)U] = -VP - pVO + ptV 2 u . (1.22)

If we neglect body forces such as gravity, Eq. (1.22) becomes

p 2+ (u-V)u = -VP + gV2u . (1.23)

The problem is now defined; all that remains is to find an expression for the

velocity field u, and to apply the appropriate boundary conditions imposed

by the problem of interest.



Equations of Motion

Introduction

The Navier-Stokes equation (1.14) describes the general motion of a viscous,

compressible fluid element. For this particular study, we will describe the

surface motion of a driven, pulsating air bubble in water. We will further

assume that the densities of the water and air are essentially constant (i.e.,

the fluids are incompressible) so that Eq. (1.23) holds. While this

incompressibility condition seems artificial at first, we note that the density

of water is very much greater than the air inside the bubble and that the

pressures used in this experiment do not change the density of the water

appreciably. In addition, we will assume small amplitude volume

pulsations for the bubble so that the density of the gas will not change

appreciably. If the bubble is driven at sufficiently low pressure amplitudes

then the steady-state motion of the bubble is spherically symmetric. The

surface tension of the water/air interface and the viscosity of the water tend

to keep th6 bubble spherical. Any small perturbation introduced to the

surface will quickly damp out and the bubble will resume a spherical

shape. In this study we are interested in determining the maximum

driving pressure applied to the bubble for which the bubble will retain its

12
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spherical shape. We will show that a pressure threshold exists so that the

bubble does not gradually exhibit non-radial motion as a function of

pressure; rather, a sharp demarcation exists between the point when any

small perturbation will damp out and when that perturbation will either

grow exponentially or become a stable shape oscillation.

For our theoretical model, we will assume that the bubble is slightly

distorted from a spherical surface of radius R(t) to a surface described by a

superposition of spherical harmonics:

rs - R(t) + ea(t)Ynm(,*) , (2.1)

where 0, e - 1 and Ynm is a spherical harmonic of degree n > 2 (n=1

corresponds to a translational motion which is not of interest in this

experiment). We will only concern ourselves with terms in the first order of

e in the following treatment. We will also make the assumption that no

mass transfer takes place across the bubble surface. The predominant

mass transport mechanism is known by the term "rectified diffusion". In

this experiment it was shown that while this process changed the amount

of air in the bubble (i.e., a volume change), the time scale (_102 sec) for such

processes is many orders of magnitude longer than the time scales used in

this experiment (- 10-3 sec). Appendix A describes the rectified diffusion

measurements in more detail.
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To solve for the equations of motion we begin by representing the velocity

and pressure by

u~ur+Eup+euv ,(2.2)

P=Pr+cPp+cPv ,(2.3)

where the subscripts refer to radial terms, r, potential correction terms, p.

and correction terms due to viscosity, v. From Eqs. (1.21) and (1.22) we have

VOU = V*(Ur + eup + euv) = 0 , (2.4)

P[D(Ur + CUP + CUO~ + [(Ur + EUp + Euv) *V](Ur + C-Up + CUO) (2.5)

-V(Pr + Epp + Epv) + j.V 2 (Ur + Eup + Euv)

which become the following six equations (to first order in rC):

V O , (2.6)

V*u 1 = 0 , (2.7)

VOu = 0 , (2.8)

P[Lur + (ur*V)ur] = ..VPr + gV2ur ,(2.9)

- p+(Ur *V)Up + (up 0V)Ul = -VPP + (2.10)

Uv+(Ur *V)uv + (Uv 0V)Ur] = -Vv+ j4V2 Uv .(2.11)
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Radial terms

Equation (2.9) is simply the radial equation. To find Ur, using Eq. (2.6) in

spherical coordinates with the origin located at the center of the bubble and

assuming u = u(r,t), then:

D(r2u) au 2u !
Vu - r = 0. (2.12)

For the rest of this section the subscript on Ur will be dropped. Integrating

Eq. (2.12) over velocity and radial limits we obtain

u r

f =(2.13)
tto ro

which gives

2!
U= uo)2 (2.14)

Noting that ro = R and uO = dR/dt = R' 1 then Eq. (2.14) becomes

1Note: in general, time derivatives will be denoted by primes.
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u = rg2g, (2.15)

where R=R(t) is the position of the bubble wall as a function of time. Now

that we have an expression for the fluid velocity Ur, we can obtain the

following relations:

au _R4R '2

(u-V)u = U - =- 2 ,1; (2.16)

(r2u)
V2u -=---- =0 , (2.17)r2ar

and

Du R2 R" 2RR'2

at r 2  (2.18)

Inserting Eqs. (2.16-2.18) into Eq. (2.9) we have:

[R 2 R" RR'2 2R4R'2  Pr2 r2 L; Dr (2.19)

Integrating r from -c to R and P from P. to P gives

P = P.. + P(R"R + 2R' 2 - ,R'2). (2.20)
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To determine the boundary condition at the bubble surface we use the

requirement of continuity of stress across the interface. From Eq. (1.8) the

stress tensor is given by

B=[P _(TI _ 2 euA 4J(Vu +UV) .(2.21)

The radial component of B is

B-P 3 Ur (Vur +UrV) . (2.22)

From the relations in Eq. (1.9) we find

aUr Ur
(Vu)r,r ='ar (uV)r,r = , (2.23)

and from Eq. (2.12) we see that

aUr 2u
V Ur =r + 2u- = 0. (2.24)

r r

Thus, B, becomes

R2 R'
Brr = P - 4 . (2.25)
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At the bubble surface, r=R we have

R'
BRR = P - 4WR- , (2.26)

where P=Pi is the pressure inside the bubble. Applying the dynamical

boundary condition that the discontinuity in the normal stress (B") will

equal the surface tension a times the total curvature of the surface we have

Brr(M - Brr(2 ) = (2. (a. 7)

(for r=R, (1) = inside, (2) = outside)

or

i - 4 VR' .p=-, (2.28)

where P is the pressure in the liquid. This equation may be used to describe

the pressure at the bubble's surface:

2a R'
P = Pi -(W- 4R" • (2.29)

Equating Eqs. (2.20) and (2.29) and rearranging terms we arrive at a form of

the Rayleigh-Plesset equation
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Potential correction terms - deviation from spherical symmetry

Next, we turn our attention to Eq. (2.10) which represents the deviation

from sphericity. As before, the problem is to determine up. To begin, we

will assume that the position of the surface can be represented by

r.= Rt) + ea(t)Y M(,). (2.31)

We will assume that u may be described by the gradient of a potential u=V

and that Laplace's equation V20=0 holds. Thus we will have solutions of

Laplace's equation on both sides of the bubble wall interface so that the

potential terms 01 and 02 may be written as (Plesset, 1954)

R2R'
0 = rX +blrnYn r<R , (2.32)

R2R' b2Yn
02= r+ +T r>R (2.33)

This form of the velocity potentials assumes axisymmetry (i.e., the

spherical harmonic Ynm(0,0) = Yn(O) ). While this assumption may not be

strictly true, as shown in experimental studies by Holt (1989), this
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approximation may prove to be quite good for small perturbations to the

spherical shape. Using the boundary condition

= =u = R'+ ea'Yn , (2.34)
ar r S

and using Eqs. (2.32) and (2.33), we can solve for bj and b2 as follows:

R2R' R 2R' b2Yn

- nbrrn1 Yn - +-F2(n+1) R' + ca'Yn , (2.35)
b2(n+l)

b1 =-nr2n+l (2.36)

and

R2 R'
2(R' + ea'yn - -(.7(n+ 1)Yn (.7

rn+2

Inserting Eq. (2.31) into Eqs. (2.36) and (2.37) and simplifying we obtain:

Rn+2 c(2aR'/R + a')
2 = (n+1) (2.38)

Next, to obtain an expression for bl in Eq. (2.36), using Eqs. (2.38) and (2.31),

we find
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2aR'/R + a'
b =- nRn-1  (2.39)

Therefore inserting Eqs. (2.38) and (2.39) into Eqs. (2.32) and (2.33) we arrive

at the following:

- R2 R'n- 2aR'/R + a'] , (2.40)

R2 R= r +(n+y rn+2aR'/R + a'] (2.41)

The deviation from sphericity is the second term in Eqs. (2.40) and (2.41) so

that 1 and 02 may be rewritten as

= - 2aR'R + a'] (2.42)

Rn+2 2aR'/R +'

(n+)rn+l + a'] . (2.43)

Inserting these into Eq. (2.10) we find

PI + :- V(vo) + vO( R- = -vP + gtV2V(O). (2.44)

Equation (2.44) may be integrated to give (using only the spherical deviation

parts)
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P- -- + r2 .(2.45)

By inserting Eqs. (2.42) and (2.43) into Eq. (2.45) one can arrive at the

following equations:

- P1,(Ra" +3R'a'+2R"a)Yn , (2.46)
n

Pp2 = (nln)(Ra" + 3R'a' + 2R"a)Yn (2.47)

Combining Eqs. (2.46) and (2.47), and using Pp = Ppl - Pp2 , we have

P P + =7 nRa" + 3R'a' + 2R"a)Yn. (2.48)

Potential correction terms due to viscosity

The viscous correction terms, u, and Pv, are difficult to derive. Prosperetti

(1977) gives an excellent treatment of the problem. Using the results from

Prosperetti one can arrive at

R

Psi =(nl)P~n~vT1(Rt) + tJ(s fl 2 [1(% 3 ]Tl(st)d} (2.49)
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Pv2 = lPYn{V2~ ~ (T [)-1 1T-(st)ds} (2.50)Pv2 =riP2ynt VJ2 R it Os 28 o14

where v=jg/p is the kinematic viscosity and T is the toroidal field on the

inner (1) and outer (2) side of the bubble wall. The boundary condition that

requires the tangential stress vanish at the bubble surface requires that

T(r,t) satisfy

2vRn-l s-nT(st)ds + vT(R,t) = n+ I(n+2)a - (n-1) n]. (2.51)

If we ignore the integral contributions in Eqs. (2.49 - 2.51) and eliminate

T(R,t) in Eqs. (2.49) and (2.50) by using Eq. (2.51) we have

Pvi = (n+l)plYn{2vi F (n+1)a' - (n-1)Ra]} (2.52)

P2= nP2Yn{2v{(n+)a' - (n-1 R']} . (2.53)

Thus Pv =Pvl - Pv2 is

= -n+1)RJ (n+1)a'- (n-1)-W-jyn (2.54)

1 R - (n 1I- I III III
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1
I Equations of motionI

Combining Eqs. (2.11), (2.48), and (2.54) and applying the boundary

3 conditions at the bubble interface described above we may write the

spherical deviation terms (those mutilplied by Yn) as2

LP2 Pi P21)(~ P'+
(n+1) n -Ll-(+1+ + n-1)(n+2)(L2-1) a

i-n+lP2 + (n-1)(n+2)a 0. (2.55)

I For an air bubble in water pi 1 P2 and l - 912. So, setting pl =0 and gI = 0 in

3 Eq. (2.55) we have

n+1)iRa" + n+1)'+

." n-}R" + 2(n-1)(n+2) g+ (n-1)(n+N)2 a = 0, (2.58)

I which can be rearranged to obtain

2 Note that if we ignore viscosity (i.e., gl=1 = 2 = 0) then the above equation can be written as
a ' + +Aa=0, (2.56)

where

[n(n-1)p2-(n+l)(n+2)pl]R"- (n-1)n(n+l)(n+2

R[np2+(n+1)pl] R (2.57)

3 which is the form found by Plesset (1954).

I
I



a" + -2(n- 1)(n+1)(n+2 ]a +

(n-1 R + 2(n+)(n+2)v-- + (n+l)(n+2 a = 0. (2.59)

Thus, Eqs. (2.30) and (2.59) will be used to describe the motion of a pulsating

air bubble in water.

Recapitulation

To re-iterate the basic assumptions, we have assumed that

" the bubble is basically spherical with small amplitude

oscillations

" the deviation from sphericity can be expressed in terms of a

superposition of spherical harmonics

" the density of the water is much greater than that of air

" the viscosity of water is much greater than that of air

" rotational flow and toroidal fields can be ignored

" there are no body forces acting on the bubble

" initial spherical deviations are very small compared to the

equilibrium radius of the bubble

" the bubble behaves axisymmetrically (i.e., Ynm = Yn)

" there is no mass transfer across the interface
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the equations of motion describing the motion of the bubble

surface are given by:

1 R PR(2.60)
1R"R + ,R2 = 40Pi - P. - La - 4 (2.60

iP

a" + [ - 2(n-1)(n+1)(n+2 ]a'+ (2.61)

(n- +2(n+1)(n+2)'j + (n+l)(n+2 i-a = 0 (n<2).

Analytical and numerical solutions will be presented later and compared

with experimental data.



Analytical Solution

Introduction

The instability of the radial motion of a pulsating bubble in a sound field

was studied by Eller and Crum in 1970. Following their theoretical outline

an analytical solution to the equations of motion, Eqs. (2.60) and (2.61), can

be found. This approach can be summarized as follows: We begin with the

form of the Rayleigh-Plesset equation given as Eq. (2.60):

R"R + .2 Pi - P. - 2"- 4 . (3.1)

Here R=R(t) is the bubble radius, p is the density of the water, Pi is the

pressure inside the bubble, P. is the pressure in the water far from the

bubble (i.e., the driving pressure), a is the surface tension, g. is the viscosity

of the water, and the primes indicate differentiation with respect to time.

The quantities p, a and g. are considered to be constants and P. is given.

The internal bubble pressure and a functional form of the bubble surface

are needed to solve the equation.
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Interna bubble pressure

Characterizing the pressure inside the bubble, Pi, has received

considerable attention (Prosperetti, et al., 1988). If one assumes that the

bubble's radial oscillation is small compared with its equilibrium radius

then one may assume that the pressure inside the bubble obeys a polytropic

law. This simply means that the pressure inside the bubble can be related

to its volume by PVc = constant. When an isothermal approximation is

made, the polytropic exponent is xt=l. For an adiabatic approximation the

polytropic exponent is simply the ratio of specific heats, "y1y=cp/cv. Thus,

the pressure inside the bubble can be expressed as

Pi = Pc r , (3.2)

where 1 _ K <_ 7, Po = Pamb + 2/Ro is the initial equilibrium pressure inside

the bubble, Pamb is the ambient pressure in the liquid, and Ro is the

equilibrium bubble radius. The actual value of K has been studied by

various researchers (Devin 1959, Eller 1970, Crum 1983, and Prosperetti

1986). In this study the form derived by Eller (1970) was used:

K(Y1)sinhX-sinX)_JK 1 <+dth2)- 1+3'- ) A (3.3)X c s h X -o s X!
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with the following definitions:

X = Ro(2VD1) 112 , (3.4)
K1

D 1 - , (3.5)P lCpl

.= f X(sinhX+sinX)-2(coshX-cosX) (3.6)
IX2(coshX-cosX)+3(y-1)X(sinhX-sinX)j

where Ro is the equilibrium bubble radius, co=2xf is the angular driving

frequency, K 1 is the thermal conductivity of the gas in the bubble, P1 is the

gas density, and Cp1 is the specific heat at constant pressure of the gas. The

various formulations give essentially equivalent values of the polytropic

exponent for the conditions of interest in this study.

Third order approximate solution

Radial equation

If we assume that the bubble is driven by a sinusoidally varying pressure

field given by:

P 0 = Pamb[l+ PacOs(O)t)] , (3.7)
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where Pa is the amplitude of the driving pressure, then Eq. (3.1) may be

written as

3 P12 p1 Zo. 3x R- 2o - RI _

R"R +f)'2 = - Pamb[1+PaCOS(O)t)] - 4R} (3.8)

If we ignore surface tension and viscosity (following Eller and Crum), then

Eq. (3.8) becomes

R"R + '2 + ab 1- + Pacos(t)} =0, (3.9)

which represents the radial equation of motion. This equation can be

numerically integrated to obtain R=R(t).

Perturbation equation

To describe the bubble's deviation from sphericity, we will first assume that

the liquid is inviscid so that Eq. (2.61) becomes

a" + 3 a'+ (n-1 { + (n+1)(n+2) a-=0. (3.10)

If we define a new variable yn(t) as
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yn(t) = R2(t)an(t) , (3.11)

then Eq. (3.10) becomes

F(n+2Xn2"1)a 3 R' 2 _ R"]
Y"n+ j, " - (n+ ffjYn = 0. (3.12)

This equation represents the spherical deviation equation of motion. Thus

Eqs. (3.9) and (3.12) are the coupled equations of motion describing a

pulsating air bubble in water. To derive an analytical solution one may

assume that steady state radial oscillations can be approximated by the

following truncated expression (Hall and Seminara, 1980):

R/Ro = (1 + A2b) + A cos((ot) + A2c cos(2cot) + A2 d cos(3ot) , (3.13)

where

A - Pa (3.14)|31<p 2 - 1)'

! (3y+ 1- 2)
b= 4 1 (3.15)

(3y + 1 + 5p2)
4(1-P) (3.16)

d 12(3y+1+ 11p2)c-(3y+ lX3y+2) (3.17)
24(1.9p,2)



and

d=O/Oo. (3.18)

The angular resonance frequency, wo, of the oscillating bubble is given by

= p 2  
(3.19)

Inserting Eq. (3.13) into Eq. (3.12) and making the following substitution:

1
z =(3.20)

one will arrive at the following (Hayashi, 1964):

Y"n + (80 + 202cos(2z) + 204 cos(4z) + ... )yn = 0 . (3.21)

This is simply a linear, second-order differential equation with periodic

coefficients and can be written as a form of Hill's equation:

d 2 + e0 +2 02jcos(2jz) =0 (3.22)
j=1

nn mmma nnli~n mnn~n iI
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The 02j-s are given to third order in A (Eller and Crum, 1969) by

O0 = a + [3a(1-b) - (2n+) ]A2 , (3.23)

02 = (2n+l--)A+[3a(2b+c-)-3c+"- (n+)(5c+2b-s)]A3 (3.24)

04 = [2a(l-c) +'4+ (n+D)(c-1)]A2 (3.25)

and

06 = [a(3c--d + 3c - '+ (n+)(18d+-5c) ]A3 (3.26)

where

4a(n+l)(n2-1)3 =.3(3.27)
p 0o

Solutions to Hil's equation

The solutions to Hill's equation are examined in detail by McLachlan,

(1947). A solution to Hill's equation is:

yn(z) = el)z Xc2je 2ji , (3.28)
j=-00
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where the c2j's are expansion coefficients and j may be real, imaginary, or

complex. For our purposes, Eq. (3.28) may be rewritten as

yn(z) = eu co + 2Xc 2je 2jziI , (3.29)
j=l J

using the fact that c2j = c-2j. This solution will be defined as unstable if it

tends to 00 as z--o- . The solution will be defined to be stable if it tends to zero

or remains bounded as z--oo . From McLachlan, the solution is unstable if

u is any real number not equal to 0, or if -o is complex. The solution is stable

and periodic if u=ip and if P is a rational fraction. The solution is also stable

and non-periodic if v = ip with 0 irrational. Since we are concerned with

shape instabilities we will examine the unstable solutions. Since later we

will be comparing u with a physical quantity, we will limit ourselves to the

solutions for which i is real. Equation (3.29) may be written as:

Yn = e'Oz(z,a) , (3.30)

where

cD(z,a) = sin(jz-a) + 02f2(z,a) + 04f4(z,a) + ... + 0(02) + .... (3.31)

Equation (3.30) may be approximated by using Eq. (3.31) as
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Yn = euzsin(jz-c) = eOt/2 sin(jot/2 - a) , (3.32)I
where a is some phase angle. Since a can be arbitrary, the problem reduces

I to finding an expression for u since all other quantities are given. The

general theory of Mathieu functions can be used to obtain expressions for u.

Eller and Crum used the results of Hayashi (1964) to obtain approximate

solutions for u. Since the solutions to Hill's equations have regions of

stability and instability, the idea is to find the values of x in the unstable

regions and relate these to known parameters, namely, Ro and Pa. Only

the first three unstable regions were considered (j=1,2,3). The first three

regions correspond to angular frequencies of co/2, o), and 3o)/2. The values

for -o for each j may be summarized as follows: For a given j, the value of i)

may be given byI
Xb2 = Slj2 - S2j2  (3.33)

Slj and S2j can be approximated by only considering the coefficients, 00, 02,

04, and 06 and by considering only terms up to second order in 0. Thus, the

values of Sj and S2j are given by:

i for j=1:

11
2S 11 = 02 + 40204 + - 0 40 6 (3.34)

i
i
I



36

2S21 -- 00- 1 + g62 + t64 + 02 (3.35)

for j=2:

4S12 = 04;e2 2 + e 2O6 , (3.36)
1 2+1 21 2 IJ_'=2 1 14 -6 + 042 (3.37)

and for j=3:

1
6S13 = 06 - 4264 (3.38)

6S23 = 00o- 9 - -02 = - 4 +7+ 6(.9
T6 -. e ,;) (3.39)

Next, we obtain a polynomial equation for each uj:

+ + e2 212 + (e 2 - S1 2 ) =0 (3.40)

-- 4 + + 2 + (f2.S122) 0

1 6 4J J34 + - (2-S132) =0 , (3.42)

where
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I e = 0o/2 - 1/2 + 022/16 + 042/12, (3.43)

f = 0o/4 - 1 + 022/24 + 042/128 + 062/40 , (3.44)

g = 0016 - 3/2 + 022/96 + 042/60 + 062/432 . (3.45)I
Solutions to Eqs. (3.40 - 3.42) will give the values of j for particular values of

n andj.

I
Threshold criteria

INow that we have Solutions for the values of i, we must establish a criterion

for the location of the unstable regions as a function of bubble radius, Ro,

and applied pressure, Pa. Equation (3.32) represents a solution that will

tend to infinity if u is positive (negative values for u will be discarded as will

be seen later). This results in describing a shape oscillation whose

I amplitude exponentially grows in time with angular frequency jco/2. Due to

5 the absence of viscosity in Eq. (3.12), the shape oscillations, once begun,

would increase exponentially in amplitude over time. Experimental results

show that this is not the case. To overcome this problem, Eller and Crum

followed an example from Lamb (1945) stating that small perturbations to

I the shape of a pulsating bubble would, in a slightly viscous liquid, damp out

exponentially as e-a t. The decay constant a is given by

I
I
I
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(n+2)(2nil)i±a = 2 ' (3.46)
Ro2

where gi is the liquid viscosity, Ro is the equilibrium radius of the bubble and

n > 2 is the spherical harmonic mode number. If it is assumed that the

onset of a shape oscillation occurs whenever the growth rate of the unstable

solutions to Hill's equation (uct/2) is greater than the damping term (-at),

then the instability condition for a given value of n is

urt/2 > -at , (3.47)

or

2(n+2)(2n+l)J(4
S> 2 (3.48)

oR

Thus, the thresholds for instability are determined by values of U that

satisfy Eqs. (3.40), (3.41) and (3.42) subject to the condition required by Eq.

(3.48).
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Solutions to the analytical threshold equations

Equations (3.40-3.42) may be numerically solved. The object is to find the

minimum value of Pa given values of Re, j, and n which would satisfy the

instability criteria in Eq. (3.48). A computer program was developed to solve

this system of equations. Using the program DTHRESH found in Appendix

D, these equations were computed to find threshold regions for all

combinations of n=2-4 and j=1-3. This resulted in a description of the

minimum instability threshold regions in Pa vs. Re space. The appropriate

constants used were as follows:

Ambient pressure P0  1.0 bar
Air density Pg 0.001204 g/cm3

Ambient temperature T 293 K
Driving frequency f " /2n = 22.22 kHz
Gas constant Rg 8.314x10 7 dyn/mol K
Kinematic viscosity g± 0.0091 cm 2/sec

Liquid density P 1.0 g/cm 3

Molecular weight of air M 28.964 g/mol
Specific heats of air

at constant volume Cvg 20.8x10 7 dyn/mol K
at constant pressure CPg 2.91x10 8 dyn/mol K

Speed of sound in water c 1.5x10 5 cm/s
Surface tension a 72.5 dyn/cm
Thermal conductivity of air K1 I 2.5x103 dyn/(sec cm K)

The value of Ro ranged from 10 to 100 microns. Pressures greater than 0.8

bar were not treated.
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It can been seen that solving Eqs. (3.40 - 3.42) will result in both real and

imaginary values for i> as well as positive and negative values. All

imaginary results were ignored. In calculating the real results, an

interesting feature of the solutions was noted. The solution space of u as a

function of pressure for a particular radius was normally described by that

shown in Fig. 1.

R=36.00
10

00

0 . .. .. .. .. .. .. .. . .. .. . .. .. .. .. .. .... ..e 0°
0

0
CO)

-5

-10 I I I
0.0 0.2 0.4 0.6 0.8

Pressure (bars)

Figure 1: Roots of the analytical solution, exhibiting a single threshold point.

The graph represent all four solutions for u. A value of zero indicates an

imaginary solution value. The solution space is actually three dimensional

(x=pressure, y=real solutions, z=imaginary solutions). The projection

shown is the "real" slice with the "imaginary" slice perpendicular to the
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paper. From this figure it is easily seen that as the applied pressure

increases, the instability increases once a threshold pressure has been

reached. There are regions, though, in which this is not true. Figure 2

shows an example of this behavior.

2 R=69.00

0.2 I I '

-1

0

M

0.0 020.4 0.6 0.8
Pressure (bars)

Figure 2 RooLs of the analytical solution, exhibiting multiple threshold points.

Here we noticed the appearance of a feature labeled "bubbling". For certain

ranges of radii, it was seen that there was a "pocket" of instability

preceding the "main" instability point. Whether this bubbling was simply

an artifact of the mathematics or a real physical feature was not clear. If

we ignored this bubbling feature then an example of the threshold graph is

shown in Fig. 3.
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0.8Thresholds (ignore Bubble effect)

0.6

1..

0.4

U)

0.2

0.0 I I I I0 20 40 60 80 100
Radius (microns)

Figure 3: Analytical thresholds ignoring "bubble" feature for n=2 and j=1.

Thresholds (with Bubble effect)0.8
S I I I I |

0.6
En

Cz

0.4
En

0.2

0.0 I I I I0 20 40 60 80 100
Radius (microns)

Figure 4: Analytical thresholds for the lowest pressure threshold for n=2 and j= 1.
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Thresholds Combination0.8 ' I i I ' I '

Unstable
0.6 :'___

0.6 , ."... . .... '..

4Stable

$ 0.4
U) -

U.- Unstable

0.2
Stable

0.01 1
0 20 40 60 80 100

Radius (microns)

Figure 5: Combination of figures 3 and 4.

Figure 4 shows the minimum thresholds when bubbling is included. A

combination of Figs. 3 and 4 is shown in Fig. 5. Notice that theoretically,

there should be regions in which a bubble is radially stable at different

pressures. Experimentally, this did not make sense. In effect, using this

result, it would mean that if we started with a bubble of a particular radius

in the bubbling region at a pressure below the first threshold, and then

increased the pressure, the bubble should exhibit shape oscillations, and

then as the pressure was increased through the unstable region, the bubble

should become radially stable again. This experiment was tried repeatedly

with no success. This seeming contradiction between theory and

experiment might also lead one to suspect that there are "forbidden"

regions in the pressure vs. radius curves. These would be regions which
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would not contradict the experimental observations but simply that the

particular mode was not possible and that another mode would engage

keeping the bubble in a shape oscillation. It was also interesting to note

that even the numerical integration of the original equations of motion,

treated in the next chapter, showed similar (although not identical)

behavior as the analytical solution.

If we assume that the radial instability threshold is the lowest pressure

which satisfies Eq. (3.48), then the resulting thresholds are shown in Figs.

6, 7, and 8.

N=2 J=1,2,3--.0.8 ' " :

.6

0 0.4 -0

S0.2 0 o W N V
U• 

0610 0

0 20 40 60 80 100
Radius Ro(microns)

Figure 6: Analytical thresholds for n=2;j=l (+), 2 (*), 3 (o).
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Figure 7: Analytical thresholds for n=3;j=1 x); 2 (a), 3 (0).

N=4 J=1,2,30.8 ' l ' --U •
-4 0 U1CIS
, 0.6 •

0.4

0.0.

0 20 40 60 80 100

Radius Ro(microns)

Figure 8: Analytical thresholds for n=4; j=1 (0), 2 (',3(").
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Figure 9 shows the result of combining all permutations of n and j by

locating the minimum pressure threshold that would exhibit some sort of

shape instability.

Miminum Analytic Threshold
I I I I=2j= I

. n=2j=2
o n=2j=3
x n=3j=la n=3j=2

0 .6n=3j= 3

0.6* n=4j=l
-: . n=4j=2
;-4 v n=4j=3

¢ 0.4

0.2 I- o0

0.0
0 20 40 60 80 100

Radius Ro(microns)

Figure 9: Combination of figures 6, 7, and 8 keeping only the lowest thresholds.

By increasing precision in computing these equations and by using newer

numerical computing techniques, it was found that while the current

results agree in general with the work done by Eller and Crum, there are

regions of differences. It will be shown later that for small bubbles (i.e., Ro

< 40g), their theory does not predict what happens experimentally

(although it is in good qualitative agreement with bubbles greater than
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about 401.). A possible reason for this discrepancy is that Eller and Crum

ignored the surface tension term 2a/R in Eq. (3.9). For large values of R,

this term is negligible, but for smaller radii it cannot be ignored. The

polytropic exponent is another parameter in which discrepancies could

occur. Figure 10 demonstrates what happens when adiabatic or isothermal

assumptions are made.

Effect of Polytropic Exponent08I I ' I I '

0.6 1.4

............ - 1 .4
0.6 -'-1.0

0.4

0,2
0.2

0.0
0 20 40 60 80 100

Radius (microns)

Figure 10: Comparison of analytical thresholds between polytropic exponents of K =1.0
(isothermal), 1.4 (adiabatic), and calculated from equation (3.3).

It is seen that the calculated polytropic exponent gives results somewhere

in between adiabatic and isothermal with the calculated value tending

toward one or the other at the limits of the bubble's equilibrium radius. In

the next chapter, a direct integration technique will be used which does not



48

ignore either the surface tension or the viscosity terms and uses a

calculated polytropic exponent for describing the pressure inside the bubble.



Numerical Solution

Introduction

In the previous chapter, an analytical solution to the coupled equations of

motion of a driven, pulsating air bubble in water was derived. An alternate

solution utilizing a direct integration technique will be presented in this

chapter. The equations of motion (Eqs. (2.60) and (2.61)) are

R"R + R'2 = 1Pi - P. - -4 (4.1)

a"+ [ - 2(n-1)(n+1)(n+2 ]a'+

(n'- R + 2(n+l)(n+2)vt, + (n+l)(n+2 'a =0 , (4.2)

where R=R(t) is the bubble radius, p is the density of water, Pi is the

pressure inside the bubble, P. is the pressure in the water, a is the surface

tension of water, g. is the viscosity of water, a=a(t) is the amplitude of the

shape distortion, v = p/p, and n is the degree of the spherical harmonic.

49
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Numerical Integration

Numerical integration of these coupled equations, derived earlier, proved to

be extremely time consuming. A computer program (SOE, Shape

Oscillation Equation solver) was developed to calculate the bubble motion

(see Appendix D). Basically, SOE solved Eqs. (4.1) and (4.2) directly by

utilizing an IMSL (IMSL, 1987) integration subroutine using Gear's

"backward differentiation" technique for R(t) and a(t) for a particular value

of n. To solve Eq. (4.1) a polytropic approximation was made for Pi:

Pi = P ,R 3 (4.3)(43

where Ro is the equilibrium bubble radius, R=R(t) is the instantaneous

bubble radius, and

2a
Po = Pamb+", (4.4)

with Pamb being the ambient pressure in the liquid. The value of K, or the

polytropic exponent, has been examined by several workers (Eller (1970),

Crum (1983), and Prosperetti (1977)). Their formulations are essentially

equivalent and K can be expressed by:
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i = 2 - i2- 1 (Y-l)(sinhX-sinX(4'5

f(t l X coshX- cosX)JI
with the following definitions

X = Ro(2auD 1)112 , (4.6)
Ki

D1 = (4.7)
P1Cp1

dth = 3(^f 1 X(sinhX+sinX)-2(coshX-cosX) (4.8)
l X2(coshX-cosX)+3y- )X(sinhX-sinX)JI

9 where y is the ratio of specific heats of the gas, w=2nf is the angular driving

frequency, K 1 is the thermal conductivity of the gas in the bubble, Pl is the

3 gas density, and Cpl is the specific heat at constant pressure of the gas.

Next, we will drive the bubble so that P. is given by:I
I P 0 = Pamb(1 - Pasin(owt)) , (4.9)

where Pa is the unitless amplitude of the driving pressure. One can write

Eqs. (4.1) and (4.2), using the substitution R=Rox, asi
3x" [-4-3x2 +pRo2x Pox-3y- Pamb(1- Pasin(ot)) -- j (4.10)

a" 3x' + 2(n+2)(2n+1 )a' +
x )p(Rox)2JIx n2

(n-1 --- n 2 (n+1)a + 2Ptx'Ro) ]a (4.11)

I
I
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solutions

The solution to the above coupled equations will give a(t) for each value of n.

The other parameters are given by:

Ambient pressure Po 1.0 bar

Air density pg 0.001204 g/cm 3

Ambient temperature T 293 K
Driving frequency f Wd2n = 22.22 kHz
Gas constant Rg 8.314x10 7 dyn/mol K
Kinematic viscosity p. 0.0091 cm 2/sec
Liquid density p 1.0 g/cm 3

Molecular weight of air M 28.964 g/mol
Specific heats of air

at constant volume Cvg 20.8x10 7 dyn/mol K
at constant pressure Cpg 2.91x10 8 dyn/mol K

Speed of sound in water c 1.5x10 5 cm/s

Surface tension a 72.5 dyn/cm
Thermal conductivity of air K 1  2.5x10 3 dyn/(sec cm K)

The procedure that SOE followed was to calculate Eq. (4.10) until the R(t's

reached a steady-state, periodic solution or 2000 driving cycles, whichever

came first. The criterion for a steady-state radial oscillation was defined to

be no more than 0.001% deviation in the radius and no more than 0.001%

deviation in the bubble wall velocity over three driving cycles. (Actually, the

velocity criterion was stringent enough so that the actual deviation in the
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radius was never more than 0.00001%.) Applying the steady-state criterion

over three cycles allowed for detection of steady-state solutions of period one

or period two (i.e., solutions which showed cyclic behavior every or every

other driving period). If 2000 driving cycles were calculated before the

stability criterion was met, then the solution was discarded. A steady-state

solution (t=ts) corresponded to a spherically symmetric bubble pulsation.

The R(t)'s leading up to steady-state were considered transient solutions.

Next, the bubble was given a small perturbation. This meant that the SOE

program now solved both Eqs. (4.10) and (4.11). To produce the initial

perturbation, a(t=0) was set to 1.0. It is interesting to note that examination

of Eq. (4.11) shows that it is independent of the initial value of a(t=0). The

value of 1.0 was chosen for convenience. Next, the system of equations was

allowed to run from t = ts to t = ts + 20 driving cycles. SOE then generated

statistical and graphical information. Examples of the graphical output is

shown in the figures in Appendix C. At this point, the reader may proceed

directly to the "thresholds" section on page 59 without loss of continuity.

The following descriptions of the numerical outputs are included here for

completeness and to demonstrate several interesting numerical features.

The title of each graph is in the following format: SOE_###_###, where

the first set of numbers represents the amplitude of the driving pressure in

1/1000 bars, (i.e., 005 means 0.005 bar, and 100 means 0.1 bar). The second
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set of numbers represents the bubble radius in microns (i.e., 010 means 10

microns).

The top graph in Figs. C1-C18 represents the driving pressure amplitude in

Pascals. The x-axis displays time represented in number of periods of the

driving pressure. The minimum x value is ts, or the number of periods

required to attain steady-state oscillation. The second graph represents the

solution to the radial Eq. (4.10) (the spherically symmetric term). The

periodicity of the volume pulsation can be read from this graph. The third

graph represents the spherical deviation coefficient (an(t)) terms. Recall
00

that the bubble's surface is represented by rs = R(t) + 'an(t)Yn(O). Thus,
n=2

the third graph is the nth coefficient of the nth spherical harmonic term.

The noteworthy feature of this graph is the increase, decrease, or stability of

the a(t)'s as a function of time. If the values increase, then the shape

oscillation is unstable, meaning that any radial instability will continue to

grow in amplitude over time. If the values decrease, then the shape

oscillations will damp out in time and the bubble will revert back to

spherical pulsations. If the a(t) solutions are stable, then the threshold for

radial instability has been found. Actually achieving a stable oscillation

proved difficult; as a result the theoretical thresholds were selected by

determining the transition point from stability to instability. As with the

radial plot, the frequency or periodicity information can be read from the

plot.
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The bottom two graphs represent stroboscopic Poincar6 plots (Cook, 1986).

The left one represents the bubble wall velocity vs. bubble radius where each

point indicates the instantaneous value of the bubble velocity and radius at a

specific time in each driving cycle. This graph shows what happens from

time t=0 to t=ts leading up to the steady state oscillation. This is basically

the transient information and is an indicator of the stability of the radial

pulsation. If the Poincar6 phase plot converges to a point, then the

oscillation is stable with period one. If it converges to two points, then the

oscillation is stable with period two, etc. The other stroboscopic plot

represents the same information for the a(t)'s from time t=ts to 20 cycles

later. If it converges to (0,0) then the shape oscillation damps out. If it

diverges, then the shape oscillation is unstable. Otherwise the shape

oscillation is stable and may be either periodic or non-periodic.

Shape Oscilation Equation solver

SOE was run for each value of n = 2, 3, and 4 over a range of initial bubble

radii and driving pressures. The values ranged from R=10 to 100 microns

and Pa = 0.005 to 0.7 bar. In order to span the space covered by this range,

over 5000 graphs were output by SOE over a period of 3 weeks. The

collection of graphs compiled in Appendix C represent some typical outputs

from SOE.
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Figure C1 shows a typical radially stable bubble. This is a 10g bubble driven

at 0.005 bar. Note that this pressure and radius can be read from the title

SOE_005_010. The solution reached stability in just 10 driving cycles and

when the bubble was perturbed, it damped out in less than a cycle. Figure

C2 shows a more typical shape distortion response. This is a 454t bubble

driven at 0.005 bar. Here the shape oscillation damps out in ten driving

cycles. Figure C3 shows a 95g± bubble driven at 0.005 bar. Here we see that

this combination of pressure and bubble radius is closer to the instability

threshold as evidenced by the protracted decay time of the perturbation.

Also, the Poincard phase plots of the radial transient motion show different

behavior on each plot even though visually the radial motion is basically the

same and any shape distortion is damped out. Figures C1, C2 and C3 show

bubbles that are driven at a very low pressure amplitude.

If the driving pressure is increased to 0.1 bar then more interesting bubble

behavior is observed. Figure C4 shows a 70g bubble driven at 0.1 bar. A

second harmonic is now observed in the radial oscillation. The shape

distortion graph still shows a damping out effect while also showing other

transient effects. Figures C5, C6, C7, and C8 show a sequence of plots in

which the driving pressure is 0.15 bar. Solutions for bubbles of sizes 54g±,

56g, 58g, and 60g are shown. At 544i the shape distortion amplitude slowly

damps out (Fig. CM). At 56g± (Fig. C6) the shape oscillation is basically stable

(graphically the solution looks stable, but actually it is slightly decreasing)

with a period of twice the driving frequency. The periodicity (period two)
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can also be seen from the accompanying Poincar6 graph. For the 58g.

bubble (Fig. C7), it can be seen that the shape oscillation amplitude is

growing. The appearance of the second harmonic in the radial response is

now more pronounced. For the 60g bubble (Fig. C8) (still at the same

driving pressure) the shape distortion amplitude is again damping out.

Thus, it was seen that bubbles in this size range went through a threshold

with the threshold point being about 57g at 0.15 bar.

This "threshold crossing" feature can also occur more than once at the

same driving pressure. Figures C9-C15 show a sequence of plots

.representing multiple crossings of the instability thresholds in radius for

the same pressure. Here the pressure is kept constant at 0.175 bar. The

bubble radii range from 54g± to 66g±. At 54g. (Fig. C9) the shape distortion

solution is decreasing in time, at 56g (Fig. C10) the distortion is increasing

in time indicating a threshold crossing near 55g. At 58g (Fig. Cl) and at

60g (Fig. C12) the shape oscillation amplitudes are increasing while at 62g

(Fig. C13) the shape distortion initially increases and then damps out.

Thus, a second threshold crossing near 61g has occurred. For a 64g (Fig.

C14) bubble the shape solution again initially increases and then damps

out. For a 66g (Fig. C15) bubble, the solution is again increasing indicating

a threshold crossing near 65g. This "multiple crossing" effect is prevalent

throughout the pressure and radius values used.
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The preceding figures showed only the first 20 cycles of the solution after

steady-state. Actually, the calculations were continued for another 80

cycles for a total of 100 cycles of the driving pressure. Figure C16 shows an

example of all 100 cycles. Since it was difficult to see much information in

this type of graph, 20 cycles was deemed sufficient to determine graphically

the bubble's behavior.

Increasing the pressure to 0.2 bar showed more transient behavior in both

the radial and the shape distortion solutions. In fact, some combinations of

pressure and radius showed an extremely large (1021) increase in the shape

oscillation amplitude. These are obviously non-physical since once the

bubble begins large amplitude shape distortions the bubble will break up.

The theory does not include any breakup information.

Figure C17 shows an interesting Poincar6 plot. The steady-state radial

oscillation is a typical oscillation with a strong second harmonic

component, but the transient information leading up to the state-state

solution has an interesting behavior. Analysis of the transient behavior of

the SQE plots, while an interesting project, is beyond the scope of this work.

So far, all of the radial responses have been period one (i.e., they repeat once

every cycle of the driving frequency). Figure C18 illustrates a period two

response evidencing the emergence of of a sub-harmonic. The period two

response is easily seen in the Poincar6 plot.



Thresholds

SOE generated over 5000 of the graphs outlined above. The type of shape

distortions (i.e., the spherical harmonic number, n) were calculated

separately for cases of n = 2, 3, and 4. The graphs were then examined to

obtain the thresholds for surface oscillation. These thresholds were defined

as the transition point from decreasing to increasing a's as a function of

time. Figures 11, 12, and 13 show the pressure thresholds as a function of

radius for n = 2, 3, and 4.

Numerical Threshold (N=2)
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Figure 11: SOE numerical thresholds for n=2.
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Figure 13: SOE numerical thresholds for n=4.
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5 The numerical threshold graphs are shown in grid form. The plus signs

indicate an increasing solution to Eq. (4.11), while the negative signs

indicate a decreasing solution. The points at which the solutions go from

5 Idecreasing to increasing indicate the transition through the radial

instability threshold. An adaptive grid approach was used to find the cross-

5 over point from decreasing to increasing solutions. Initially, a large grid

spacing was used and then by manually looking at the resulting plots from

i SOE, regions of the grid were blocked off and the grid spacing was

5narrowed. This procedure was repeated until a definite threshold curve

could be generated. Figure 14 is a superposition of all the thresholds.

Minimum Numerical Threshold0.8 '
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Cd3. (2.2) (32
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3Figure 14: Minimum thresholds of figures 11, 12, and 13.

I
I
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The solid line represents the minimum pressure threshold for radial

instability as a function of bubble radius. The values of the mode, n, and the

frequency multiplier, j, (from ejo)t 2 ) are also indicated.

0 umerical-Analytical Comparison
0. (217 1 1 1 1 L=2j=] IT
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- • o

° o x n=3j=l

(3.?) a n=3j=2
0.6 - n=3j=3

(2.?) (2? j 
a n 4j=l
" n=4j=2U) a n=4j=3

( 3 7 -2 , 2 )"

S0.4 (3,3)(
En (3,2).

]4 (3,3)
0.2

(4.2)

(2,1)

0.0
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Radius (microns)

Figure 15: Overlay of figures 9 and 14. Comparison between the analytic and numerical
solutions to the equations of motion.

Comparison with analytic solutions

Figure 15 shows a comparison between the analytical results in the

previous section and the numerical threshold results obtained in this

section. It can be seen that for bubble radii greater than 401t, the predicted

thresholds for both the analytic and numerical solutions agree quite well.
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This figure demonstrates one of the important contributions of this study.

It shows that by including the surface tension terms, in the equations of

motion, and then numerically integrating the resulting coupled differential

equations, a different threshold curve is obtained than that obtained using

the analytical approach, especially for smaller bubbles.

Below is a table of the mode numbers, n, which represent the type of shape

oscillation, determined by the nth spherical harmonic, and the frequency

multiplier j determined by ejowt 2. For j=1 the shape oscillation will oscillate

at 1/2 the driving frequency, for j=2 the shape oscillation will oscillate at the

driving frequency and for j=3, at 3/2 the driving frequency.

Bubble Radius Mode number Frequency

Range u. nam n  Jnin

97-100 4,4 1,1
78-97 U 1,1
63-78 4,4 2,2
53-63 2,2 1,1
51-53 3,3 2,2
48-51 4,4 3,3
36-48 3,3 3,3
35-36 2,2 2,2
33-35 3,3 3,3
33-33 2,3 3,3
24-33 4,2 2,?
20-24 4,3 2,?
20-21 4,2 2,?
18-20 4,3 2,?
10-18 4,2 2,?

(subscripts a and n represent analytic and numeric)
Table 1: Analytical/Numerical comparison
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As seen from the table, the analytical approximation agrees with the

numerical solution quite well from 35g to 100g. For smaller radii though,

the numerical threshold results are more reasonable. Unfortunatly, for

these smaller bubble radii, transients obscured the accurate determination

of the shape oscillation frequency and are denoted by a (?). It would be

expected that as the bubble radius decreases, the stability would generally

increase or approach a constant value. The numerical threshold

predictions show a general increase in the stability. As was stated in the

analytic section, the reason for the non-physical nature of the analytic

approximation could be due to the ignoring of the surface tension terms in

the equations of motion.

The numerical method used Eqs. (4.1) and (4.2), were derived under the

assumption of axisymmetry. In theory, a more general solution, not

assuming axisymmetry, could be attempted and might be a subject for

future work. Now that the theoretical, analytical and numerical bases have

been outlined, the next section will detail the experimental verification of

these approaches.
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5 Mie Scattering

I
Theory

3 In this experiment, laser light was scattered from an oscillating bubble to

detect radial and shape oscillations of the bubble. Scattering laser light off

an air bubble in water to quantitatively measure the pulsations of bubbles

from about 10-100 microns has been shown to be a very sensitive technique

.1 (Hansen 1983, and Holt 1988). The theory which describes the phenomenon

3 of the scattering of electromagnetic waves off small particles (ka > 10), is

known as "Mie Theory", named after Gustav Mie. The scattering of light by

S a spherical object has received considerable attention (Mie 1908, Debye 1909,

Stratton 1941, Born and Wolfe 1959). This theory deals with the scattering of

I a plane electromagnetic wave by an isotropic, homogeneous sphere of

3arbitrary size. The scattered intensity as a function of position is the

quantity of interest. In the far field the scattering amplitude functions are

£ given by:

£1 2n+1 1

S1 = n(n+1) (anlln(cos0) + bnTn(COs8)) , (5.1)
n= 1
n 00 2n+1 (5.2)

S2 2 n(n+1) (anTn(COSO) + bnltn(COSO))
n=1

I
i
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The interested reader is directed to Appendix B for a derivation of these

amplitude functions. The functions Itn and tn are given by:

(1)
Pn (cosO)

In(COSO) sin (5.3)

d (1)
Tn(cosO) --P (cosO) (5.4)

do n

where Pn are the associated Legendre polynomials. The scattering

coefficients are given by:

"nXn(O )Wn'(P ) - mXn(P)Wn'(a ) (5)

WWWO)- M~~n()n'(a)'an = n()xn() -mXn(O)x n (() (5.6)
m~n(a)Wn'(P) - Wn()n'(a)=n m~n(a)W~n,( ). n(I3)n'()O (5.6)

where m = kl/k2 , a = k2 a = 2nm2a!Xo, P = k 1a = ma, k is the wave number, a

is the bubble radius, and X0 is the wavelength of the incident light in

vacuum. Subscripts 1 and 2 refer to the bubble interior and surrounding

medium respectively. The functions xV and ( are given by:

x n(kr) = (7Ekr/2)L' 2Jn+1/2(kr) , (5.7)

Wn(kr) - (nkr/2)l2H ( (kr) , (5.8)
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(2)
where Jn+1,(kr) is the half-integral order Bessel function and H 2 1/ 2 (kr) is

the half-integral order Hankel function.

The intensity of the scattered, polarized light in the 0 and 0 directions is:

22 X2

I0 -42 I S2 12 cos 2 = I2cos 2  , (5.9)

_-422 IS1 2sin2= -L- Ilsin2 , (5.10)
=4n 2r2  (5.10)

where X is the wavelength in the medium. Note that 0 and 0 represent the

perpendicular and parallel components, respectively, to the scattering

plane. The scattering plane contains both the scattering and the incident

waves.

Calculation

In the experiment, the incident light was polarized with the electric field

vector parallel to the 0=900 plane. The detecting equipment was also in that

plane so that the only component detected was I, where

Iexp = I = Isin 2o X2 I1 (5.11)

.. .. ................................. . . .. . . . 47c~r
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Since all quantities except Il were kept constant, the calculation was

performed to render II as a function of scattering angle (0) and as a

function of the bubble radius (r). To calculate these quantities a modified

version of the computer program developed by Wiscombe (MIEV1) was

used. A listing of the modified program (MIENOS) is given in Appendix D.

The programs were initially run on a MicroVAX II, with runtimes on the

order of a few minutes for simple cases to over ten hours for integration

cases. The programs were then transferred to a CYBER 205 which

improved performance considerably. Execution times on the CYBER

ranged from one to ten minutes. This allowed for the production of a large

number of data sets in a relatively short time.

Scattering intensity as a function of angle

The first set of data concerned the scattering intensity as a function of angle

with a constant bubble radius. Both 10 and 10 were calculated. The

scattering angle was from 0 (forward) to 180 (backward) degrees. The

bubble radii ranged from 10 to 100 microns. Figures C19 and C20 (found in

Appendix C) illustrate the scattering. A representative figure is shown

here for a bubble of a 50g± radius.
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Figure 16: Mie scattering intensities, I1 (dotted line) and 12 (solid line), as a function of
scattering angle for a 50g bubble.

In Fig. 16, the dotted lines represent I1 and the solid lines 12 where

I1 = 10go1 ( I. (5.12)

7[n2r2

12 = logl0{-- I0 (5.13)

In general, Figs. C19 and C20 show that 11 is normally slightly greater

than 12. Also, from about 75 to 130 degrees, I1 is much greater than 12. The

general structure of the curves is essentially the same. Each begins with a

very large forward scatter followed by a general decline to a small peak

around 75 to 80 degrees, and in the case of I1, a leveling out up to 180
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degrees, while for 12 , a sharp decline to about 100 degrees followed by a

general rise up to 180 degrees.

With the experimental setup used in this study, these graphs should be

reproducible. However in practice, the detection apparatus always has an

acceptance angle that must be taken into consideration. In this

experiment, an acceptance angle of about 4 degrees was used. To

compensate for this angle of acceptance, the scattering programs were

rerun and integrated over 4 degrees. Figures C21 and C22 show the

results. Figure 17 is a representative graph of a 50g bubble.

50 MICRON
108

10 6

>1.)

U2 10 4

to

1012

100

0 20 40 60 80 100 120 140 160 iso
Scattering Angle (degrees)

Figure 17: Mie scattering intensities, I1 (dotted line) and 12 (solid line), integrated over a
solid angle of 4 degrees as a function of scattering angle for a 504. bubble.
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Nearly all of the fine structure exhibited in Figs. C19 and C20 has been

eliminated. Again, Il is generally larger then 12. Figure 18 is a composite

Of 12, and Fig. 19 a composite of I1, for a range of bubble radii.
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Figure 18: Composite Il angular Mie scattering result (over a 4 degree solid angle) for
bubble radii: 10ji (lower curve), 304i, 50p, 70p, and 904. (upper curve).



72

I2 Composite

106

104

hO
• 102

fliCO.)

0 20 40 60 80 100 120 140 160 180
Scattering Angle (degrees)

Figure 19: Composite 12 angular Mie scattering result (over a 4 degree solid angle) for
bubble radii: 101 (lower curve), 30t, 5 0g, 70i', and 9091 (upper curve).

It is apparent from the graphs that to maximize the detection of scattered

light, the detector must be placed at an angle somewhere less than 80

degrees. In this experiment, detectors were placed at +30 degrees, -30

degrees, and 80 degrees. The detectors were sensitive enough so that their

positioning was not paramount and their placement was dictated by

experimental constraints, not by theoretical considerations. The choice of

polarization angle was also dictated by the same considerations. The I1

polarization was chosen since, at these angles, the detectors output higher

voltages than with the 12 polarization. To determine if these theoretical

graphs matched experimental data, an experiment was performed in

which a bubble of known size was levitated in a tuned cell and made to
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pulsate at 22.22 kHz in a spherically symmetric oscillation. (The

experimental apparatus will be described in detail in the next chapter.)

The detector was then rotated around the levitation cell from an angle of 45

to 120 degrees. The output from the detector was recorded on a computer.

Figures 20, 21, and 22 show the results for 50i, 60p., and 80p. bubbles.
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Figure 20: Experimental angular Mie scattering results (asterisks) for a 50p bubble,
overlayed by 11 (solid line) and 12 (dotted line).
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Figure 21: Experimental angular Mie scattering results (asterisks) for a 60 1 bubble,
overlayed by 11 (solid line) and 12 (dotted line).
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Figure 22: Experimental angular Mie scattering results (asterisks) for a 804t bubble,
overlayed by I1 (solid line) and 12 (dotted line).
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The asterisks represent the experimental data while the lines represent the

predicted scattering amplitudes from Mie scattering theory. The solid lines

indicate I1 and the dotted lines 12. Both I1 and 12 have been normalized to

compare against the experimental data. (The normalization is described in

the next section.) The scattering angle is with respect to the forward

scattering direction. It is clear from these graphs that the polarization is in

the I1 plane. For scattering angles above 80 degrees the prediction matches

the experimental data quite well. Due to experimental constraints, angles

less than 40 degrees were not accessible. For the angles between 50 and 80

degrees, the general shape of the curves are similar but specific differences

are also apparent.

Scattering at a specfic angle for various bubble radi

The scattering programs were then run keeping the detection angle

constant and varying the bubble size. Figures C23-C27 show the scattering

intensity as a function of bubble radius for detection angles of 10 to 180

degrees. Figure 23 illustrates the scattering intensity as a function of

bubble radius for an 80 degree detection angle.
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Figure 23: Mie scattering intensities, I1 (dotted line) and 12 (solid line), as a function of
bubble radius for an 80 degree :cattering angle.

Again, there is noticeable fine structure. To reduce the fine structure, with

the aim of using this information for calibration purposes, the same

technique of integrating over a solid angle was utilized. This was a very

compute-intensive process and we were only able to obtain results in a

reasonable period (about one hour) when using a Cyber 205 and fully

vectorized computer code. Figures C28-C32 show the results of this

integration. Figure 24 illustrates the results for an 80 degree detection

angle over a 4 degree acceptance angle.
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Figure 24: Mie scattering intensities, I1 (dotted line) and 12 (solid line), integrated over a 4
degree solid angle, as a function of bubble radius for an 80 degree scattering angle.

Notice that most, but not all of the fine structure is gone. Examination of

Figs. C28-C32 show that for most detection angles the scattered intensity is

not single valued. The graph at 80 degrees shown in Fig. 24 is single valued

over the range of bubble radii considered and as such can be used as a

transfer curve to obtain the actual bubble radius given a specific intensity.

This fact was the major reason for placing one of the detectors at 80

degrees.

To verify the theory, the detector was positioned at a fixed location (keeping

the detection angle constant) and the bubble size was varied. A bubble was

created in a levitation cell tuned to 22.22 kHz. A polarized laser beam (488



78

nm) was scattered off the bubble and detected by a photodiode located 80

degrees from the forward scattering angle at a distance of about 150 mm

from the center of the bubble. This gave an acceptance angle of about 4

degrees. Bubbles of various radii were created and the detector output was

recorded. Only those bubbles that were spherically symmetric were chosen.

Bubble radii around 1/2 and 1/3 of the resonance radius (Ro = 142 4m) were

not chosen due to inherent non-linearities in their pulsations and their

affinity for producing surface oscillations. It was also noticed that bubbles

near these sizes grew very rapidly in a matter of seconds. Figure 25 shows

the experimental data results of this test.
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Figure 25: Experimental data from DC detector at 80 degrees as a function of bubble radius.
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In order to compare the Mie scattering prediction to the experimental data,

the incident intensity on the bubble is required to scale the prediction

appropriately. In this study, we were unable to directly measure the laser

beam intensity incident on the bubble's surface. To compensate for this a

least-squares fit was made between the theoretical and experimental

results to determine the multiplicitive constant Io. Where Iexp = Imie /io •

Figure 26 shows the results of the comparison between theory and

experiment.
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Figure 26: Experimental data from DC detector at 80 degrees as a function of bubble radius.
Overlaid by the Mie scattering prediction, 11 (solid line) and 12 (dotted line).

It can be seen that the theoretical prediction matches the experimental data

very well. The underestimation of Mie theory at smaller radii could be
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explained as a systematic error in the experimental data. To test this

hypothesis, the experiment was performed under a variety of conditions,

but no significant differences were found. Thus, if a systematic error did

occur it was not observed. However, differences between the Mie theory fit

and the experimental data were about one to two microns which was within

the experimental error estimate.

I1



Experiment

Method

In the preceding chapters we presented the theoretical foundation for

predicting shape oscillation thresholds, in this chapter we present the

experimcntal results azd -omparisons with theory. In this experiment an

acoustic levitation technique was used to position a single, stably-pulsating

air bubble in water at a constant position. In order to observe the pulsation

of the bubble, it was necessary to levitate the bubble in water at a specific

position so that a laser beam could be scattered off the bubble for long

periods of time. Since an air bubble in water experiences a buoyancy force,

an opposing force is required to keep the bubble stationary. In this

experiment an acoustic stationary wave was produced in a cylindrical cell.

The two acoustic radiation forces acting on a bubble in this field are the so-

called rigid-sphere force (Nyborg, 1967) and a force due to the

compressibility of the bubble. Crum (1970) observed that the rigid-sphere

terms were completely dominated by the compressibility terms for a gas

bubble and could be neglected. Eller (1967) derived an expression for the

compressibility terms of the average acoustic force in the z direction as

81
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where Rn is the equilibrium bubble radius about which it sinusodially

oscillates, PA is the acoustic pressure amplitude at the position of the bubble

along the z axis, P0 is the hydrostatic pressure, Xz is the wavelength of the

standing wave in the z direction, (o is the driving frequency, and C00 2 =

3Po/pRn 2 is the resonance frequency with p being the density of water.

When this force balances the buoyancy force, Fb = (4/3)nRn 3 pg, then the

bubble is acoustically levitated. Bubbles driven below resonance have a

stable equilibrium position on the z axis just above a pressure maximum.

Thus, the sound field draws the bubble toward a pressure antinode

opposing the upward buoyancy force. Figuratively, this can be depicted as

shown in Fig. 27. During the positive pressure cycle, the bubble's volume is

at its smallest and the force due to the pressure gradient is upward.

During the negative pressure cycle, the bubble's volume is at a maximum

and the force is downward. Thus, the average force is basically the sum of

the forces, and since the volume during the neg,- -.-v, -ycle is larger then the

volume in the positive cycle, the total force points .ownward opposing the

upward buoyancy force. Once we had a method for levitating bubbles, an

experimental apparatus was designed.
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Figure 27: Figurative acoustic levitation technique.

Figure 28 shows a functional diagram of the experimental setup. Basically,

a levitation technique was used to trap a single air bubble in water at a

specified location in a resonating cell. Using this levitation technique the

trapped bubble would linearly pulsate at the driving frequency (at

sufficiently low acoustic pressures). Laser light was then scattered off the

bubble and detected by one or more photodiodes. The output voltages from

the photodiodes were recorded on digitizers and were either displayed on

oscilloscopes or stored on a computer.
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Figure 28: Functional diagram of complete experimental system.

The experimental setup consisted of an acoustic levitation cell filled with

water mounted on an y-z translator, a three watt argon-ion laser operating

at 440 mW and a wavelength of 488 nm, a maximum of three Orieli

photodiode detectors operating with an inline laser-line filter, and

associated optics and temperature probes, all mounted on a 4' x 6' optical

table with self-leveling pneumatic supports for vibration isolation. In
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addition to the equipment on the optical table, two adjoining equipment

racks were employed to contain a function generator driving a 75-watt

power amplifier used to drive the levitation cell, digitizing and analog

oscilloscopes used to observe and record the photodiode output, the power

supply/light control equipment for the laser and other support equipment

that will be detailed later.

To control most of the experiment, a MNC PDP-11/73 computer was utilized

for process control, data acquisition and data storage. The MNC was

connected into a VAX network for further data reduction and graphical

analysis. With this setup, bubbles in the range of 10 to 100gm radius could

be generated easily and repeatably. Observations of the bubble's pulsation,

either linearly, non-linearly or with shape oscillations, could be made with

relative ease. The details of the system are described below.

Apparatus

Levitation cell

Figure 29 shows a detailed drawing of the levitation cell. It consists of two

3" diameter, 1/2" thick, coaxially mounted, cylindrical piezoceramic (PZT-4)

transducers separated by a 3" diameter, 1/4" thick, glass cylinder. The

glass, transducers and a 3" diameter Plexiglas disc were glued together
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with silicone glue to obtain a watertight enclosure. A threaded, cylindrical

piece of plexiglass was glued directly to the top transducer with silicone

glue. A threaded, watertight lid was fashioned with two "quick-disconnect"

connecters, allowing water flow into and out of the cell, maintaining a

closed system. Also, a small 6-32 tapped hole was placed in the lid for

insertion of a temperature probe.

O, " Plexiglas

Top

View

TransduceLMm =

RTV

-7.5 cm - 0
Glass---

3.5 cm

.1/4" NPT threads
-- Plexiglas (8 threads min)

Figure 29: Detail of acoustic levitation cell.

The transducers were operated in parallel and poled to drive the

transducers in their thickness mode. The transducers had a resonance

frequency of 44 kHz and were driven below that resonance at 22.22 kHz.

This choice of frequency was dictated by the geometry of the cell and was
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consistently used throughout the experiment. At this frequency, the

standing wave generated in the cell was in the (r,O,z) mode of (1,0,3). The

main antinode was located slightly below the geometric center of the cell.

This was due to the fact that the cell was not completely filled with water

and that the bottom (Plexiglas plate) and top (air) surfaces were not the

same.

Extreme care had to be taken to ensure that all surfaces were free of

bubbles. Any extraneous bubbles would greatly affect the pressure profile

in the cell. The water in the cell was filtered to 0.1 micron and most

organics were removed using a Barnstead water-treatment system. Before

any experiment, the water was allowed to sit in the sealed cell with low

power applied to the transducers for approximately one hour. This allowed

the water to reach dissolved gas equilibrium and to be in thermal

equilibrium with the cell. Power had to be applied to the cell during this

time since the transducers had a warm-up period of about 15 minutes, after

which their temperature remained essentially constant. To ensure that the

water was saturated with air, the cell was briskly shaken for a few seconds

about 5 minutes prior to an experiment.

The cell was mounted on an y-z translation stage, with the x-axis being

defined as the direction of the laser beam parallel to the plane of the optical

table. The translators provide 0.001" resolution graduations and 1" travel

in both the y and z directions. The levitation cell was driven by a 75-watt
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Krohn-Hite 7500 power amplifier operated by a Hewlett-Packard 3325B

synthesizer/function generator, which provided a 22.22kHz sine wave. The

output of the power amplifier was monitored by a Hewlett-Packard 3455A

digital multimeter. This arrangement allowed constant monitoring of the

power applied to the cell. The function generator was controlled via an

lEEE-488 interface by a MNC PDP-11/73 computer. The sine wave produced

by the function generator was monitored by a Tektronix T912 10 MHz analog

storage oscilloscope after being amplified by 20 dB by a Hewlett-Packard

465A amplifier. With this setup the pressure inside the cell could be

precisely monitored and changed as needed.

Optical Scattering System

Figure 30 shows a detailed drawing of the optical scattering system. A 3-

watt water-cooled Lexel model 95 argon-ion laser was operated at the 488

nm wavelength producing an effective single line output of 440 mW in the

TEMoo mode. A rotating polarizer was attached to the laser providing a

1200:1 linear polarization ratio. The polarizer was positioned such that the

electric field vector was parallel to the scattering plane, and consequently in

the x-y plane, parallel to the optical table. The laser was mounted on the

optical table and the laser beam was raised and reflected 90 degrees by two

Oriel 99.8% reflection mirrors to illuminate the levitation cell. The laser

beam had a lie2 width of 1.0 mm nominal and was aligned such that it was

I
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parallel to the optical table and passed through a diameter of the levitation

cell. This laser beam width was large enough to completely illuminate all

the bubbles in the size range used. The water circulation system, power

supply, and light control system were mounted in an adjoining rack.

Oriel 7182-1
Photodiode

Mirror System

Forward scattering -31. Laser
direction . Levitation Cell - a -

IOriel 71182-11 Oriel 7182- 1
Photodiode Photodiode Bausch & LombAC"D"Spotting Light /

Lexel Model 95

at + 80.50 Argon-Ion Laser

Power Supply

Circulation System

Figure 30: Detail of optical scattering system.

The light detection system consisted of the following: There were a

maximum of three Oriel 7182-1 photovoltaic silicone photodiodes with

integral preamplifier, each with a detection area of 100 mm 2 . The

photodiodes were mounted in Oriel 71910 hoods with an integral 488 nm

laser-line transmission filter and circuit board used for mounting the

silicone detector. Figure 31 shows the schematic of the detection circuit.
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The internal 25k potentiometer was used to compensate for any dark

voltage or bias current. The external resistor controlled the amplification

and bandpass characteristics of the photodiode.

Feedback Resistor: DC = 1 MW

AC = 100 kW

0m F L 
15 V

Feedback -
Resistor

Op amp iOutput

25KI

Figure 31: Photodiode detector circuit.

To obtain maximum amplification, bandwidth must be sacrificed. Two

different circuits were used in this experiment: The first (or so-called DC)

circuit used a 10 MO feedback resistor, which allowed for maximum

amplification with a bandpass of DC to 1 kHz. This detector was DC

coupled and was used to obtain the average size of the bubble, as will be seen

later. The other two detectors were AC coupled and utilized a 100 kK2

feedback resistor for a bandpass of DC to 100 kHz. By utilizing both types of
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1 detection we could obtain the average size of the bubble while

3 simultaneously viewing the pulsations of the bubble.

* The reason for using two different detectors instead of one DC coupled

detector was the dynamic range of the digitizers used in this experiment.

The change in intensity as a function of time as the bubble pulsated was on

3 the order of 1% to 10% of the average radius, which did not allow for

adequate resolution of the pulsation when superimposed on the DC

3 component.

i The voltage output by the detectors was proportional to the incident intensity

3 scattered from the bubble, which could be related to the bubble's size. The

calibration technique is presented later. The detector output was sent

3 directly to three digitizers in an Hewlett-Packard 5183U waveform

recorder/digitizing oscilloscope. Also, the "AC" outputs were connected to

a Tektronix 2235 100 MHz analog oscilloscope while the "DC' outputs were

3 connected to a Tektronix T912 10 MHz storage oscilloscope. This allowed for

real-time monitoring of the bubble's movement. The "DC" signal was also

3 routed to the MNC computer for threshold triggering measurements. The

digital and analog oscilloscopes were triggered by the function generator

I via a sync signal. The MNC computer also controlled the digitizers as well

3 as the function generator. With this optical detection system, various

properties of scattered light from a pulsating bubble could be observed.i
I
I
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Support eqipment

In addition to the equipment listed above, various pieces of support

equipment were used. To observe the bubbles in the cell without the laser

beam activated, a Bausch & Lomb 31-35-30 spotting light was used. This

light would backlight the bubble so that it could easily be seen with the eye.

To perform the rise-time measurements (discussed later) additional

equipment was needed as shown in Fig. 32 below.

F Normally the switch is in position
#1. When pressed to position 2, the HP 3325B
sound field is cut off to the cell and i

i the counting system activates.

Levitation Cell 7500-it1 1 Amplifie

2
Wavetek 1182A Ortec 875
Funcion Gnertr Counter

Fluke 7250A
Fre uen Counter

Tenelec TC 930A
PowrPower Suappat l

Figure 32: Detail of sound cutoff apparatus.
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It was required that the sound field in the cell be intermittently turned off

and on while taking rise-time measurements. Also the time that the sound

field was off was needed, as well as a means of determining how far the

bubble rose while the sound was off. To do the timing, a powered relay was

used to turn the sound field off and on using a momentary switch. This

switch was powered by a Tenelec TC 930A power supply. The switch also

controlled a counting circuit, which consisted of a Wavetek model 1182A

4MHz function generator operating in a square wave mode at 1 MHz, and

an EG&G Ortec 875 counter. When the switch was turned off, the function

generator drove the counter to count in microseconds. When the switch

was released, the counter would stop. Various other optical accessories,

mounting hardware and electronic equipment were used at different stages

of the experiment and will not be itemized.

With this experimental setup we have improved upon previous work done

by Hansen (1983) and by Holt (1988). This system is reliable, repeatable, and

relatively easy to use to observe the behavior of a levitated air bubble

pulsating in water.

Tuning the levitation cell

In order to maximize the pressure in the cell, the cell must be tuned to its

resonance frequency. This allows a minimal voltage to be applied to the
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transducers, and since the transducers have a tendency to heat over time, a

minimal voltage was desired so as not to affect the temperature of the water

in the cell.

During experimental runs, the tuning was accomplished by filling the cell

completely with water and then removing 40cc's of water from the cell.

Voltage was applied to the cell and a bubble was created (the actual method

for bubble creation will be discussed later). Once the bubble was levitated,

the generator frequency was altered (while the generator voltage remained

constant) so that the bubble would move to its lowest stable position in the

cell. If the frequency was higher then 22.22 kHz, water, was added to the

cell; if lower, then water was removed. As the water level approached

resonance height, the applied generator voltage had to be lowered to keep

the bubble linearly oscillating. This procedure was continued until the cell

was at resonance. Large bubbles (- 80 microns) were used to calibrate the

cell in this way due to the fact that small changes in the cell's resonance

characteristics affected large bubbles more than small bubbles.

To check that this was a valid method of calibration, a needle hydrophone

was mounted vertically above the cell and immersed in the water. The cell

was filled with water and 40cc's were removed. The hydrophone was then

placed at the location of the antinode near the center of the cell and the

frequency was altered to maximize the signal output from the probe. If the

frequency was above 22.22 kHz, water was added to the cell; if less than,
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water was removed. When the hydrophone was unable to sense any

difference in pressure when the frequency was changed a small amount,

around 22.22 kHZ (-±20 Hz), the cell was said to be calibrated to the

accuracy of the probe. The probe was then removed, and a bubble was

created in the cell. The frequency was again altered around 22.22 kHz to

determine if the cell was indeed at resonance. It was determined that the

bubble method of tuning the cell was much more sensitive to frequency

changes and water level than the probe method. With large linearly

pulsating bubbles, one could observe vertical bubble motion when the

frequency was changed by as little at 10 Hz.

Keeping the cell tuned over the time period of a data run, which lasted

anywhere from one minute to one hour, proved to be a difficult task. The

resonance of the cell changed mostly due to temperature fluctuations as the

cell did not have any protection from the ambient air. Also, evaporation

played a role until a cover was machined to seal the top of the cell. This had

an added benefit in that the cell became nearly a closed system, so that dust

from the laboratory air did not contaminate the water. The cell was not a

completely closed system, however, in that a tiny hole was left in the top for

a temperature probe. During data runs, the cell was checked many times

for resonance fluctuations. The criterion used was that if the tuning

changed more than 20 Hz at any time during the data run, then the data

was declared invalid for that run.



96

Bubbl Radius CAlibration

The first problem encountered in this experiment was how to accurately

determine the size of the air bubbles in the levitation cell. Visual

observation was tried, but due to the small bubble sizes and the geometry of

the cell, viewing the bubble through a measuring microscope proved futile.

A way to determine the bubble size as a function of time in real-time was

needed. A technique applied successfully by Hansen (1983) and Holt (1988)

employed scattering laser light off the bubble. In effect, the bubble could be

"photographed" in real-time as it radially pulsated at frequencies around 20

kHz. In order to use this method, a calibration of the scattered light as a

function of bubble radius was needed. To accomplish this, a bubble rise-

time technique was employed (Hansen 1983).

Figure 33 shows the experimental arrangement for the rise-time

measurements. A levitation cell filled with water was tuned to 22.22 kHz.

A bubble was then created and levitated in the cell. The position of the

bubble relative to the cell could be altered by varying the voltage applied to

the transducers. An argon-ion laser, positioned at a fixed height,

illuminated the bubble. The position of the bubble relative to the laser beam

could be maintained by vertical (z) and horizontal (y) translators supporting

the cell. A photodiode was placed at an angle of 80 degrees from the

forward scattering direction. The position of the photodiode was chosen due
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U to a consideration of Mie scattering theory and convenience (an optical

3 bench with regularly spaced holes was used to mount the apparatus).

3 Function Generator 
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Figure 33: Functional diagram of rise-time measurements experimental apparatus.

I

A vertically-graduated microscope objective, shown in Fig. 34, was
I positioned so that the bubble was visible over +lcm of vertical bubble travel.

The graduations in the microscope were calibrated by immersing a small

ruler in the water and viewing the ruler through the microscope. Once

I calibrated, the position of the microscope relative to the laser beam was

fixed. In this experiment, the laser beam, microscope and optical detector

I were attached to an optical bench and not moved. Only the levitation cell

! had freedom of movement.
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Figure 34: Detail of graduated, viewing microscope.

The rise-time calibration procedure was as follows: First, a bubble was

created in the cell and positioned to reside completely in the laser beam.

Next, the DC and AC voltage outputs of the photodiodes were recorded. The

AC output was viewed on an analog oscilloscope to ensure that the bubble

pulsation was linear (i.e., only radial pulsations of a spherical bubble were

allowed). The bubble was then moved slightly above the laser beam by

adjusting the vertical translator so that the bubble could be viewed by the

eye.



Next, while viewing the bubble through the microscope, the sound field in

the cell was abruptly turned off which simultaneously activated a timer.

Then the bubble was allowed to rise a specified number of microscope

graduations. Since the bubble tended to dissolve, this distance was kept to a

minimum. To ensure that the bubble did not appreciably dissolve during

this measurement, the position of the bubble was noted when the sound

field was turned back on. If it did not return to the same location as it

originated, or if the DC scattered voltage was different then the original, the

data point was declared invalid. The distance the bubbles rose were on the

order of 5-15 graduations, depending on bubble size.

When the bubble reached a specified height, the sound field was again

activated, thus stopping the timer, and the bubble returned to the center of

the cell. The distance risen, the time for the bubble to rise, the relative

position of the bubble to a fixed origin, the generator voltage, the ambient

temperature, the water temperature, the laser beam intensity, and the AC

and DC scattering voltages were recorded. A given bubble was allowed to

rise at least five times while all information was recorded. Figure 35 shows

the scatter in the rise-time measurements as a function of event. Each

individual data point shown represents a separate bubble. The error bars

on each point indicate the maximum scatter in the recorded rise-time per

bubble. It can be seen that a variety of bubble sizes were considered. The

number of rise-time measurements per bubble ranged from five to eight.
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From this figure we can estimate the average error in the rise-time

measurements to be about 3-5%.

Bubble Rise-times vs. Event

1.5

C.) 
*

1.0.
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Figure 35: Bubble rise-times vs. event with error bars.

There were three main sources of error. The first was the reaction time of

the operator in turning on the sound field after the bubble had risen a

certain amount. After many trials, this time was minimized and was

reduced to about 0.3 seconds, which remained essentially constant over the

data sets. The second error was due to parallax that occurred while

viewing the bubble through a microscope. It was determined that these

errors tended to increase as a function of the tiredness of the observer. Due

to this, the data sets were limited to a maximum of one-hour runs, with no

I
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more than three runs in a single day. The third and most inconsistent

error arose from currents in the water, both thermal and pressure related.

For bubbles larger than 40 microns in radius these current effects were

negligible, but, for bubbles less than 40 microns, the currents could

noticebly affect the vertical motion of the rising bubble. When such effects

were obvious to the observer, the data set was discarded. In examining Fig.

35 it is obvious that for larger bubble sizes the scatter was greater. This was

mainly due to the reaction time error, since the large bubbles were rising

very rapidly. To avoid some systematic errors, the data sets were taken two

ways. The first was to start with a small bubble, and by forcing the bubble to

grow by rectified diffusion, take data sets over a large range of radii for the

same bubble. To determine if there was any systematic error, a second

method was employed in which bubbles of various sizes were created

randomly and only used for one rise-time trial. There was no general trend

in the data using either method. Figure 36 shows the average rise-time of

the bubbles vs. the scattered DC voltage.
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Rise-times vs. Scattered Intensity
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Figure 36: Rise-time vs: DC scattered voltage.

In order to convert the rise-times to bubble radii, a drag law was used. If

one has a bubble rising at terminal velocity, U, in water, the drag force is

given by (Milne-Thomson, 1968)

1
FD = i pU 2 nRo2 CD , (7.1)

where p is the density of water, R0 is the radius of the bubble, and CD is the

drag coefficient. The forces acting on the bubble are weight, drag and

buoyancy, which must be balanced. The resulting equation is

Fw + Fd = Fb (7.2)
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or

4 R0 3pag + i PU 2 nR2CD = nR3pg (7.3)

where Pa is the density of the air in the bubble and g is the acceleration due

to gravity. Solving for RO in Eq. (7.3) one can arrive at

Ro = r- 0 ) (7.4)
8g VP--Pa)

Since Pa - P we can write Eq. (7.4) as

3U2CD
8g

The drag coefficient, CD, is normally expressed as a function of the

Reynolds number, Re = 2RoU/4, where g is the kinematic coefficient of

viscosity of the fluid. For rigid spheres, Stokes calculated CD = 24/Re.

Numerous drag laws have been determined empirically. The law which

will be used here was determined by Schiller and Nauman (Clift, et al.,

1978). This "law", which is actually a fit to a set of experimental data, was

chosen so as to be consistent with other recent works (Hansen 1983, and

Holt 1988). Equation (7.5) then becomes
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3U2 24 [,9Up. R U0.68 7

RO= 3g 2 (1 + 0.15Re0 .6 8 7 ) I + 0.o2 4 1 y) u (7.6)8g Re 2gRo 1+0.41 - -76

where Ro must be solved for iteratively. Thus, by using this drag law, the

rise times can be converted into bubble radii, thereby calibrating the

detected intensity of scattered light from the bubble as a function of bubble

radius. The calibration result is shown below in Fig. 37.

400 Intensity vs. Radius Calibration
,I ,I I . i
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Figure 37: Bubble radius vs. DC scattered voltage.

Mie scattering theory can also be used to test the validity of the rise-time

method. Figure 38 shows the predicted relative intensity for various radii at

an 80 degree scattering angle (solid line). The symbols represent the
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experimental data. Since the incident intensity on the bubble could not be

determined, the theoretical prediction was normalized, as in the preceding

chapter, and compared to the experimental data. It can be seen that there

is general agreement between theory and experiment.
Calibration Data
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Figure 38: Overlay of Fig. 37 and normalized Mie scattering prediction.

I
Pressure CalibrationI
One of the most difficult experimental problems encountered was that of

I determining the pressure exerted on the bubble in the cell. The

* experimental apparatus used in measuring the position of the bubble in the

i
I
I
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sound field relative to some fixed position as a function of pressure is shown

in Fig. 39.
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Figure 39: Schematic of pressure calibration technique using bubble position in the

levitation cell.

The procedure for pressure field calibration is to generate a bubble of fixed

size, and while slowly increasing the pressure in the cell, record its

position relative to some fixed point. The results using this technique are

shown in Fig. 40.
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Figure 40: Results of bubble size vs. Z position.

This method has many complications, the most prevalent being the fact

that the bubble is a nonlinear oscillator. Thus the position of the bubble as a

function of size and pressure is not a simple relationship. Another method

of determining the pressure in a resonating cell is to utilize a buoyancy-

force / acoustic-force balance technique (Crum, 1970). Here, the buoyancy

force is balanced against the acoustic force on the bubble. Since the bubble

should remain at the same location in the cell for a given bubble size and

driving pressure, this method should be fairly accurate. The theory is as

follows:
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For an air bubble in water to maintain a stationary position, the applied

standing wave acoustic force must balance the buoyancy force, Fb, on the

bubble

Fb = Vpg , (8.1)

where V=V(t) is the volume of the bubble, p is the density of water, and g is

the acceleration due to gravity. The time average volume is given as

V(t) = 4 R0 K R(t) 3) (8.2)

where Ro is the equilibrium radius of the bubble and R(t) is the radius of the

bubble as a function of time. The angle brackets represent a time average.

Inserting Eq. (8.2) into Eq. (8.1), the average buoyancy force can be written

as

4 3 R(t)3

: yRopgR\t ) / (8.3)

If the acoustic field is then balanced against the buoyancy force, the bubble

will "levitate"; i.e., remain in a stationary position. The acoustic force is

given by
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Fa(r,t) =-(V(t)VP(r,t)), (8.4)

where P(r,t) is the acoustic pressure field. We will let the pressure field be

represented by

P(r,t) = P- - Pa sin(kz) cos(cot) , (8.5)

where P. is the ambient pressure in the liquid in the absence of the acoustic

field, Pa is the amplitude of the applied field, (o is the angular driving

frequency of the applied pressure, z is the position of the bubble relative to

some fixed position on the z axis, and k = 2n/Xz is the experimentally

measured wave number. The wavelength, Xz, is determined

experimentally by measuring the vertical distance between pressure nodes

in the cell using a hydrophone. If we take the gradient of Eq. (8.5) and

insert the result into Eq. (8.4), the magnitude of the acoustic force is

Fa = 4 R3(Pakcos(kz)) R-t ) 
3cos(Cot)> . (8.6)

The condition for the existence of a stationary bubble is found by equating

Eqs. (8.3) and (8.6) and solving for Pa:
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4R3 /R(t)\ 4 3 R(t)3

3:Yopg\ Ro (Pcoskz)) '' cos(c(OJ (8.7)

which gives:

/ R(t) 3\

pg ( ( ot)/
Pa (8.8)

kcos(kz) R(t) 3 cos(t),

If we use only linearly pulsating bubbles and assume a small amplitude

approximation, then the radius of the bubble as a function of time can be

given by

R(t) = Ro(l+x(t)) . (8.9)

Next, performing a power series expansion in x of Eq. (8.8) and retaining

only the first order terms in x we have

(Rt) 3 1 ,(8.10)

R(t)3 cos(Ot)) = 3(x cos(cot)) , (8.11)

.. ............. . . . . ! I )l /wm i ii u l
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so that Eq. (8.8) is approximately

Pa = 3kcos(kz) (x cos(cot)) (8.12)

The linearity of a bubble oscillation can be determined experimentally by

detecting light scattered from the pulsating bubble by a photodiode and

displaying the output on an oscilloscope or spectrum analyzer. In theory,

all of the quantities in Eq. (8.12) can be measured experimentally. The

values were determined as follows: p = 1.0 g/cm 3 , g = 980.0 cm/s 2 , co = 2Wf,

f=22.22 kHz, and k = 2x/?,z. The value of Xz was experimentally determined

by using a hydrophone probe. A needle hydrophone was mounted vertically

over the center of the levitation cell, which was filled with water and tuned

to 22.22 kHz. The output voltage of the hydrophone was sent to a computer

through an analog-to-digital converter. The hydrophone probe was

immersed in the water and voltage readings were taken at specified

intervals along the z axis. Figure 41 shows an example of a data set

obtained in this manner. Xz/2 was then determined from the data and Xz

was found to be 53 cm.
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Figure 41: Pressure amplitude (given in hydrophone voltage units) in the cell as a
function of height at 0.1 bar.

The only quantity left to determine was (x cos(wot)), which is a convolution of

the amplitude of the linear oscillation of the bubble as a function of time and

a cosine function of the driving frequency. This value was theoretically

calculated by Crum and Prosperetti (1983). The value of (x cos(cot)) could

also be determined experimentally. The only difficulty, which is a

substantial one, is to determine the phase relationship between the driving

frequency and the bubble pulsation frequency. This information was not

available in this experiment. It was reported by Holt (1988) that the

theoretical method used was not sufficient to determine the pressure in the

cell and therefore he used a "best-fit" resonance approach to determine the

pressure. Gaitan (1989) has indicated that an improved theoretical analysis
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can been done, which he compared against a "free-field" method which

gave more consistent results.

A more direct approach to measuring the pressure in the cell is to immerse

a hydrophone into the cell and measure it directly. The experimental

problem is how to measure the pressure in the cell without the hydrophone

affecting the pressure profile. To do this we used a long needle hydrophone

mounted vertically along the z-axis of the levitation cell. The hydrophone

was mounted to allow three degree of freedom of movement. The

hydrophone could travel in the x, y, or z plane with a 0.1 mm resolution and

with 50 mm of travel in the x and y directions, and along the entire cell

height in the z direction. In this way the entire pressure profile in the cell

could be measured. The probe's movement was independent of the cell's

movement. Data was taken at 1.0 mm intervals. This extremely time-

consuming task gave the pressure profile in the cell in three dimensions.



114

Pressure Profile100 ,.
0 *

>*

80 *" ".

60 4
0

-30 -20 -10 0 10 20 30
X position (mm)

Figure 42: Slice of the pressure in the x direction along the y=z=center axis.
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Figure 44: Slice of the pressure in the z direction along the x=y=center axis.

Figures 42, 43, and 44 represent the data obtained along the x, y, and z axes

respectively. Due to the long period of time that elapsed between

measurement of the first and last data point in a data run, the following

procedure was used: First, the cell was tuned to 22.22 kHz, then the probe

was moved along a particular direction starting in the center of the cell.

The probe was moved in 1.0 mm increments and the voltage from the probe

was recorded. When the probed reached a cell wall, its direction was

reversed and data was taken until the probe reached the opposite cell wall.

The the probe direction reversed once again and was incrementally brought

back to the center of the cell while taking data. The scatter in the data of

Figs. 42, 43, and 44 may be due to evaporation or changes in the ambient
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temperature which affects the cell's resonance characteristics. Only data

sets in which the ambient temperature varied less than 0.2°C were declared

valid.

To ensure the uniformity of the pressure profile in the cell various readings

of the pressure at many locations in the cell were made. Once the data was

obtained, it was entered into a computer. A program (SLICE) was written to

view the data in 2 dimensional slices (see Appendix D). The output of

SLICE consisted of an axial plane slice in any direction. The pressures

were color coded and output on a color printer. The pictures shown in Figs.

45 and 46 were reproduced using a gray scale instead of color.

hE

Figure 45: Results from the SLICE program.
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I

Figure 46: Results from the SLICE program.

I

The results confirm the supposition that at 22.22 kHz, the cell is operating

I•

I wavelength) in the z direction with an antinode near the center of the cell

and nodes near the top and bottom.

I

To assess the effect of the hydrophone on the pressure field seen by theI bubble, the following procedure was used: First, a bubble was created in the

cell and levitated at a pressure slightly above its minimum trapping

pressure. This is the minimum pressure necessary to keep the bubble from

rising to the surface. Then the hydrophone was placed in the cell and

moved toward the bubble along the z axis directly above the bubble while theI
I
U
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position of the bubble was viewed through a microscope. It was found that

the bubble did not move perceptibly until the probe was within 3-5 bubble

diameters of the bubble. Next, the bubble was levitated at a pressure

comparable to the experimental pressures used in detecting shape

oscillations (approx. 0.2 bar). The probe was again inserted into the water

and moved toward the bubble. This time the probe was able to come as close

as one bubble diameter before perceptible bubble movement was observed.

This procedure was repeated with various size bubbles ranging from 20 to

70 microns in radius. (It was noticed that the larger bubbles were more

affected by the probe than the smaller bubbles. ) It was thus assumed that

the hydrophone probe did not appreciably affect the pressure field.

The next task was to calibrate the needle hydrophone probe. This was

accomplished by using a BrUel & Kjmr (B&K) 8103 calibrated hydrophone

attached to a B&K type 2635 charge amplifier. The B&K probe's diameter of

9.5 mm was too large to use directly in the cell without greatly affecting the

sound field. To calibrate the needle probe against the B&K probe a large

tank filled with water was used as shown in Fig. 47.
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Figure 47: Figure of large tank calibration apparatus.I
A transducer similar to that used on the cell was attached to the bottom of

the tank and was made to oscillate at 22.22 kHz. Using this apparatus,

pressures similar to those observed in the cell were created in the tank.

The voltages produced by the needle probe were used as a measure of the

similarity. First the needle probe, and then B&K probe were immersed into

the tank at the same location, and the pressure was varied over the range

indicated by the cell measurements. Figure 48 shows the voltage produced

by the needle probe and the B&K probe as a function of voltage applied to the

transducer.I

I
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Figure 48: Needle and B&K probe voltage vs. generator voltage.

Using the known calibration constant for the B&K probe, the B&K output

voltages were converted to pressures. The needle probe voltages were then

compared to the B&K pressure values and the ratio was taken to obtain the

calibration constant for the needle probe. Once the needle probe was

calibrated, the pressure in the cell could be related to the voltage applied to

the cell as shown in Fig. 49. Thus, we now had a way to determine the

pressure inside the cell based on an external measurement.
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Figure 49: Pressure in the cell vs. applied generator voltage.

Laser radiation pressure effects

One of the questions that arose when dealing with a powerful laser to

scatter light off a pulsating bubble is: how much effect does the laser beam

have on the bubble? Qualitatively, the incident radiation from the laser will

move the bubble away from its acoustic equilibrium position in the direction

of the beam. If the bubble had a constant radius, then it would move a

distance, x, in the direction of the beam until the it reached a new

equilibrium position, provided that the beam was not powerful enough to

completely move the bubble out of the antinode region. If the bubble was



pulsating radially, then the pressure exerted on the bubble by the beam

would also vary and the bubble would oscillate along the beam path. To see

if these effects were significant in this experiment, the problem was

examined quantitatively.

The radiation pressure can be defined as

P_ Fr _ (9.1)
a 2  v

where v=c/n is the velocity of the light in the medium, Q - 0.3 (Unger and

Marston, 1988), P is the radiation pressure, Fr is the radiation force, a is the

bubble radius, and I is the irradiance. If we let

p,= Inp 2 , (9.2)

where P' is power and p is the beam radius then

I= - , -(9.3)

Inserting Eq. (9.3) into Eq. (9.1) we have

0.3P'
P = 0(9.4)np2v
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Given that p = 6.25 x 10-8m 2, and v = 2.25 x 108m/s, then the pressure is

P = (6.79 x 10-3 s/m 3) P'. (9.5)

In this experiment the maximum amount of power the laser produced was

about 0.5 watts. Assuming that all of the power from the laser impinged on

the bubble (in practice less than 0.3 watts were actually incident on the

bubble), the maximum pressure would be

P = 3.4 x 10-3 N/rn2 , (9.6)

which gives a force of

Fr = 0.0107 a 2 . (9.7)

As an example, the force on a bubble of 50 microns would be

Fr = 2.67 x 10-11 N . (9.8)

To compare this value to the force exerted on the bubble due to the levitation

pressure, we may assume that the acoustic force is equal to the buoyancy

force. The buoyancy force can be written as
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Fb n=ta3gpw , (9.9)

I
where g = 9.8 m/s 2 is the acceleration due to gravity, and Pw = 1000 kg/m3 is

the density of water. From this relation one finds that Fb - 5.13 x 10-9 N

which is about 200 times greater than the pressure due to the laser

radiation.I
II

Next, if we allow the bubble to radially pulsate by say 20% of its radius at a

frequency of 20 kHz, then a 50 micron bubble will grow to 60 microns and

shrink to 40 microns. At 40 microns, the radiation force is I
Fr(40) = 1.71 x 10-1 1 N, (9.10)

and at 60 microns

Fr(60) = 3.845 x 10-11 N . (9.11) U

The change in force is given by I

AF = 2.136 x 10-11 N . (9.12)

To determine how far the bubble will move we let

.... _.__.II
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F=ma-m , (9.13)
At

At AFAt
Av = AF-= 4 (9.14)

pwpa

or

3AFAt 2

Ax = AvAt = it (9.15)41ca3pw

Letting At = 1/20 kHz - 5.0 x 10-5 sec then

Ax = 1.02 x 10-10 m = 0.0001 microns. (9.16)

Thus, the effects of bubble movement due to the laser radiation are

negligible in this experiment.



Shape thresholds

Introduction

Once all the calibrations and other experimental preliminaries had been

performed, it was possible to examine the question of when radial

instabilities (i.e., shape oscillations) occurred. It has been shown earlier

that shape oscillations exhibit a threshold behavior. The next step was to

perform experimental verification of the thresholds predicted by the

analytical and numerical calculations. The experimental arrangement is

shown in Fig. 28.

A levitation cell, tuned to 22.22 kHz, was used to trap a single pulsating air

bubble in a cylinder filled with water. The bubble was illuminated by an

argon-ion laser beam operating at 440 mW @ 488 nm. The scattered light

from the bubble was detected by three silicon photodiodes, converted to

voltages, digitized, and stored on a computer.

There were two basic experimental methods to determine when the bubbles

reached the shape oscillation point: First, a small bubble was created in the

cell and the pressure was kept constant at a value slightly above the

126



rectified diffusion level (Appendix A). The bubble would then grow until it

reached a critical radius, defined by the pressure, where it became radially

unstable. The pressure and radius were recorded and the procedure was

repeated. The second method (later referred to as "fast thresholds")

employed a technique in which once a spherically symmetric bubble was

obtained, the pressure in the cell would be rapidly increased (keeping the

bubble in the laser beam) until the bubble became radially unstable. Again,

the pressure and radius were recorded. Both methods had strengths and

weaknesses which are detailed later. Approximately 75 thresholds were

obtained using the first method and over 200 thresholds were obtained

using the second method. What follows is a detailed description of the

apparatus, methods and results.

Apparatus

The apparatus used in determining the shape oscillation thresholds has

been detailed earlier. In both methods of determining the shape oscillation

threshold three silicon photodiodes were placed around the cell. The "DC"

or bubble sizing photodiode was placed at 80.50 from the forward scattering

angle. The two "AC" photodiode detectors were placed at +31.50 and -31.5,

from the forward scattering angle. The AC detectors were placed at

symmetric angles about the forward so that when the bubble was

spherically pulsating, the output from the detectors would be identical. If
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the detectors showed any significant difference, either in phase or in

amplitude, a shape oscillation was assumed.

The first step in the experimental methods was to create a bubble inside the

levitation cell. The phenomenon of acoustic cavitation was used for bubble

creation (Atchley, 1985). A bubble was created in the cell by increasing the

standing wave pressure until cavitation was evident. Once this occurred,

the pressure was quickly decreased by about 20% until a formation of

streamers was visible. The streamers consisted of about five or six "lines"

of micro-bubbles which formed, moved toward the center of the cell,

coalesced, and then disintegrated. The streamers were from one to two

centimeters in length and were fairly straight. This process happened in a

repetitive cycle. The process from creation to destruction of the micro-

bubbles happened over a period of about one second with a repetition rate of

about three seconds. Visually, there was a uniform, wide-spread micro-

bubble field (about 4 cm 2 ) which, at first, slowly condensed. Then the

condensation rate increased until enough bubbles coalesced at the vertex to

form a central bubble and the remaining micro bubbles formed five or six

lines of bubbles leading in toward the center bubble. This central bubble

underwent rapid growth while gyrating wildly. The bubble mass then

reached a point when it would collapse and form a field of micro bubbles

which began the process again. It was possible to carefully lower the sound

pressure field in the cell during the rapid growth stage to obtain a stably

oscillating bubble. This took some practice and was perfected over time.



The bubbles formed this way were normally around 20 to 30 microns in

radius. The pressure required to keep these small bubbles from dissolving

was on the order of 0.5 bar.

First experimental method

There were two experimental methods used in determining when the

bubble exhibited radial instability.

1) Constant pressure, variable bubble size

2) Constant bubble size, variable pressure

The first method is described as follows: First, the levitation cell was tuned

to 22.22 kHz and was allowed to reach thermal equilibrium. Next, the

photodiodes were activated and the laser beam illuminated the levitation

cell. Next, a background measurement of the photodiode outputs was

taken. This background essentially defined the smallest resolvable bubble

detectable by the photodiodes. The measured background corresponded to a

bubble whose radius was about 20 microns. Bubbles with radii smaller

than 20 microns could not be resolved out of the background noise. Next, a

stably pulsating bubble was formed, as described above. The acoustic

pressures in the cell were about 0.4 bar immediately following the bubble's

creation. At these pressures the bubble would grow fairly rapidly, about 5

microns per minute, since this pressure exceeded the rectified diffusion
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threshold. Next, the bubble was allowed to grow while maintaining a

constant pressure in the cell. As the bubble grew, it would rise in the cell.

Thus, since the laser beam was kept at a constant height, the bubble was

constantly repositioned in the laser beam, by moving the cell vertically, so

that the entire bubble was illuminated by the beam. To determine when the

bubble was completely in the beam, the output from the "DC" detector was

maximized by altering the vertical and horizontal position of the cell. Once

a bubble had been positioned horizontally, the horizontal position was fixed.

(The x-y position of the bubble should not change due to changes in the

pressure or changes in the bubble size.)

Periodically, about once every 20 seconds, during the bubble growth the

following information was recorded: the time, the ambient temperature,

the water temperature and the DC scattered voltage (voltage output by the

"DC" photodiode). The driving frequency and voltage applied to the cell

were kept constant. The AC detectors were monitored visually on an

analog oscilloscope. A computer digitized the AC and DC signals, recorded

the time and the DC value, subtracted the AC signals, computed a "shape

threshold" criterion value and waited for a shape oscillation.

As the bubble grew, the rms output signals from the photodiodes increased

so that the computer had to adapt itself to dynamic conditions and thus

continually redefined the shape oscillation threshold criterion. This

criterion was normally defined to be >20% deviation from background of the
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difference of the two AC signals. Since this criterion did not always work,

an override feature was built in that allowed the operator to force an

initiation of the recording process.

The recording process, initiated by either the computer or operator,

consisted of triggering all four channels on an HP 5183U waveform

recorder/digitizing oscilloscope, recording the frequency and amplitude of

the driving voltage applied to the cell, the time at which the event occurred,

and, if computer initiated, whether the operator considered the event to be a

true shape oscillation or simply a random fluctuation. Since the

computer's reaction rate was much faster than the human rate, the data

acquired by computer trigger showed more precisely the actual transition

from spherical to non-spherical pulsation of the bubble.

In most cases, the threshold, once reached by this method, usually resulted

in a stable shape oscillation lasting from a few seconds to many minutes.

The bubble either remained stable or disintegrated. If it remained stable,

the pressure was lowered until the pulsation became spherical and the

process was repeated. At this point the bubble either grew slowly or

dissolved depending upon the driving pressure.

This method was applied to either growing or dissolving bubbles. No

distinction was made in the threshold measurements. If the bubble could

not be made stable or it disintegrated, then a new bubble was formed and
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the procedure was repeated from the beginning. This method had an

advantage over the second method (described later) in that rectified-

diffusion rate measurements could be made simultaneously since the time

and bubble size were recorded during the growth stage of the bubble.

Appendix A outlines these observations.

Transfer of the data from the HP to the computer for storage was not

speedy. This, coupled with the fact that the bubbles were either growing or

dissolving very slowly, meant that, at most, ten data sets could be taken per

day. Examples of these data sets are shown in Figs. 50-55.

Figures 50-55 are described as follows. Each figure contains eight graphs.

The title of each figure contains the date the data was taken and the data set

number (described later). The four graphs on the left side of the page

represent the actual data as a function of time. In the right is the

corresponding amplitude spectrum in frequency space. The frequency has

been normalized to the driving frequency of 22.22 kHz. The top graph on the

left is simply the driving signal applied to the levitation cell. Note, that all

"y" axis units have been normalized to the amplitude of the driving

frequency. The next three graphs show the output from the three

photodiode detectors, DC, AC#1, and AC#2, respectively.

Figure 50 is a sample background data set. This set the limits on the bubble

size resolution.Figure 51 is a example of a bubble in shape oscillation in
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which the amplitude of the oscillation seen by the two AC detectors is

different. Here the spectrums are similar and have harmonics of the

fundamental and first sub-harmonic. Figure 52 is an example of a bubble

undergoing a complex shape oscillation. Both the phase and amplitudes

seen by the detectors are different. Also, a broad frequency spectrum with

many harmonics and sub-harmonics are evident. Figure 53 represents one

of the more typical shape oscillations. The phase difference between the

detectors has not changed, while the amplitude of one detector is much

larger then the other detector. There is also an absence of any sub-

harmonics. Figure 54 represents a stable shape oscillation. This

particular bubble exhibited the same shape oscillation both in phase and

amplitude for a period of about 5 minutes. Figure 55 represents another

stable shape oscillation, although in this case the phase between the

detectors slowly changed over time, indicating a precession. For most of

the stable shape oscillations generated, a precession behavior was normally

observed. It is interesting to note that the rate of the precession could be

controlled by the operator by simply raising or lowering the applied

pressure by a very slight amount.
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For each data run (usually one per day) approximately ten data sets were

taken. The first data set was taken to determine the background readings

for the photodiodes. The variability during all the data runs was slight.

The second data set was taken to determine if the photodiode detectors and

all associated electronics were operating properly. To compare the data

runs on a day-to-day basis, a linear spherically pulsating bubble was placed

in the laser beam and a data set was taken. Acquiring this data set had the

added benefit of automatically calibrating any amplitude or phase

differences between the two AC photodiodes. It was found that the

variability in phase between the detectors was insignificant. The amplitude

differences were detectable over time but were easily compensated for. The

rest of the data sets during a data run were taken when a shape oscillation

threshold had been reached. The table below shows an example of the

relationship between data runs, data sets, and data descriptions.

Data Run Data Set Description
AU( ' 8 # 1 Background calibration
AUG18 #2 Linear calibration
AUG18 #3 Shape oscillation set #1
AUG18 #4 Shape oscillation set #2
AUG18 #n Shape oscillation set #n
AUG20 #1 Background calibration
AUG20 #2 Linear calibration

etc. etc. etc.
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Normally only four or five sets were kept per day, as some had to be

discarded for the following reasons: large temperature fluctuations

(>±1C), bubble contamination, or missed thresholds due to too rapid

threshold approaches that the computer did not catch. This first method

was used throughout the experiment. To increase the number of threshold

measurements taken per day an alternate method was needed.

Second expeiimentl method

The second method employed, the so-called "fast-transition method",

involved essentially the same apparatus as the first method. Here the

bubble radius was kept constant, while the pressure was rapidly increased

to initiate a shape oscillation. A bubble was created in the manner

described above and was made to pulsate spherically. Next, the bubble was

positioned completely in the laser beam. The DC scattered voltage (i.e., the

bubble size), the ambient temperature, the water temperature, the driving

frequency, and the applied voltage (i.e., the pressure amplitude) were

recorded. Then, while adjusting the cell to keep the bubble in the laser

beam, the pressure was increased as rapidly as needed until the bubble

exhibited non-radial motion as evidenced by the AC detectors. To determine

when the bubble went into shape oscillation, the outputs of the AC detectors

were input into an analog oscilloscope which had the ability to invert the

signal in channel B and add channels A and B (Tektronix 2235 100 MHz).
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The resulting trace only showed a difference from zero when the bubble

exhibited non-spherical motion.

The difficulty involved in this method was keeping the bubble positioned

correctly in the laser beam during the pressure increase. Since any change

in the pressure would move the bubble downward, the cell had to be raised

to compensate. These tasks were very difficult to perform rapidly enough.

Thus, a computer program was written to perform most of the data

acquisition tasks. The program SHAPE (Appendix D) controlled the

function generator which set the driving frequency and voltage applied to

the levitation cell. It also recorded the time, frequency, voltage, ambient

temperature, water temperature and DC scattered voltage. SHAPE was set

to perform the following tasks each time the spacebar on the terminal

keyboard was pressed:

* Record the time
* Record the driving frequency

" Record the driving voltage amplitude
" Record the ambient temperature

* Record the water temperature

* Record the DC scattered voltage

* Increment the applied voltage by a given amount.

The operator would then reposition the bubble in the beam and the process

would repeat. When the bubble went into shape oscillations, another key
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was pressed (<return>), the above items were recorded, and control of the

function generator was returned to the operator who immediately lowered

the pressure in the cell until the bubble returned to a spherical pulsation.

The process was then repeated. Since no actual waveforms were recorded

using this method, and since there was a very short time interval between

the start and end of each threshold measurement, it was possible to take

many threshold measurements each hour. As before, measurements were

discarded if the temperatures changed more than ±1'C, if the bubble

became contaminated or if a false threshold was obtained. The majority of

the threshold data was taken using this method.

Experimental observations

Type 1-5 behaviors

Before we present the threshold results, some experimental observations

will be discussed. In observing the traces on the analog oscilloscopes of the

output of the AC photodiode detectors, some interesting phenomena was

made apparent. There seemed to be five different ways a bubble could make

the transition into a surface oscillation. As noted before, the analog trace

representing the difference between the two AC detectors was essentially

zero when the bubble was spherically pulsating. The first type (type 1) of

behavior associated with non-radial motion was apparent when the analog
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trace deviated from zero into a small amplitude sine wave as shown in Fig.

56.

Type 1

5

' 0

0 2 4 6 8 10

Time (periods)

Figure 56: Type 1 trace.

The frequency of this wave was always the same as the driving frequency

and the amplitude was an order of magnitude smaller than the other types

of traces. Bubbles which exhibited this type of behavior were on the order of

60 microns in radius.

The second type (type 2) of behavior was observed for the majority of the

bubbles. This behavior is iilustrated in Fig. 57.
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Figure 57: Type 2 trace.

This type was characterized by a large amplitude (at least an order of

magnitude larger than type 1) and a sharp demarcation, in applied

pressure, between radial stability and instability. The phase difference

usually began as a constant and then became more and more

unpredictable. Bubbles of this type could normally be brought back to

spherically stable radial motion by simply lowering the pressure.

The third type (type 3) of behavior was rarely observed. Figure 58 is an

example of type 3 behavior.
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Figure 58: Type 3 trace.

The analog trace exhibited a constant phase and medium amplitude

appearance and would normally be long lived (on the order of minutes). It

was difficult to class this as a shape oscillation as changes in pressure did

not seem to affect the trace to any great degree. Normally, bubbles of this

type would transfer into a type 2 bubble by increasing the pressure a

sufficient amount.

The fourth type (type 4) of behavior was the most interesting. An example is

shown below in Fig. 59.
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Figure 59: Type 4 trace.

The analog trace would exhibit a "flickering" effect. The trace would be

zero, indicating a spherically pulsating bubble and then, with no pressure

change, it would spontaneously jump into a large amplitude, seemingly

random phase shape oscillation lasting from 0.5 to 2 seconds before

spontaneously jumping back to a zero trace. This was quite repeatable in

that once a bubble exhibited this behavior, it would continue to do so for

many minutes. There did not seem, however, to be any predictability for

which bubble size it would occur. Bubbles of all sizes would exhibit this

behavior at some time.
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The fifth type (type 5) of behavior was the second most probable. Figure 60 is

a representative example.

Type 5I0 _I ' I I

* 5

I J4I

* -5I

.10 L
I-00 2 4 6 8 10

Time (periods)

I Figure 60: Type 5 trace.

IType 5 bubbles exhibited a large-amplitude, constant-phase, long-lived,

3 stable shape oscillation which could last for up to five minutes. One reason

for the longevity of this shape oscillation could be the fact that the rectified

diffusion threshold was very near and possibly slightly higher than the

shape oscillation threshold. Bubbles around 50 microns tended to exhibit

this type of behavior more often than other bubble sizes. These types of

traces basically described all of the observed shape oscillations. Most were

repeatable with types 2 and 5 being the most prevalent.I
I
I
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Pressure Hysteresis

Another experimental observation was the evidence of a pressure

hysteresis. Beginning with a spherically pulsating bubble, the pressure

was increased until a shape oscillation occurred. To recover the spherical

pulsation, the pressure had to be lowered well below the pressure required

for the onset of the shape oscillation. During this time the bubble's

equilibrium radius did not change significantly and thus could not be an

explanation for this fact. A possible explanation is that there was not a

sufficient number of perturbation mechanisms present to cause shape

oscillations until the pressure gradient itself excited the non-radial motion.

Normally, random fluctuations in the cell environment were sufficient

perturbations.

Experimentally this hysteresis effect was tested by forcibly perturbing the

bubble by momentarily turning off the sound field. Use of this technique did

narrow the hysteresis but did not completely remove it. The average

hysteresis width was about 0.05 bar. Studying this hysteretic effect led

directly into the next observed effect, what we will call the "super-stability"

of a bubble.

Superstability
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When the system was nearly free of perturbation sources, such as thermal

currents, dirt particles, micro-bubbles, etc., then it was possible to increase

the pressure exerted on a spherically pulsating bubble beyond its radial

instability threshold. This fact was not discovered until late in the progress

of this study. Earlier it was assumed that there would always be sufficient

perturbation sources in the levitation cell to excite a surface oscillation

when the threshold had been reached. To make sure that this was indeed a

result of lacking perturbations, when such a bubble was observed, the data

was retaken by forcibly perturbing the bubble before and near the expected

threshold. In each case the bubbles which exhibited this super-stable effect

would revert to normal thresholds. These effects were normally easy to

observe, but there were cases where the relative stability of the bubble (or

more precisely, the width of the radial instability transition region) seemed

to be larger than usual.

Instability width

This transition region, can be thought of as a "broadening" of the stability

transition region. Observation showed that, for a given bubble radius, the

point below which the applied pressure would not be sufficient to induce a

shape oscillation, even in the presence of perturbations, that would last

more than two or three driving cycles, and the pressure point at which the
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bubble would become radially unstable, could vary in width (AP). Thus, for

some bubble radii, AP could be on the order of 0.1 bar where for other bubble

radii, AP could be less than 0.01 bar. Future experimental studies might

show that there is a correlation between this AP effect and radial

resonances.

Beaconing effect

One of the most interesting observed phenomenon of the surface oscillations

was a "beaconing" effect. When a bubble exhibited a stable or long lived (> 2

minutes) shape oscillation the bubble had a tendency to slowly precess. The

precession rate was on the order of a few hertz and could be altered by

slightly changing the pressure in the cell. Visually, this precession looked

like a light house beacon. It was a very obvious effect and when the beacon

crossed a photodiode, the output voltage increased by at least an order of

magnitude. This beaconing effect was not visible in the data records

obtained, since the radial pulsations were on the order of 20 kHz and the

records were taken for only approximately 100 cycles. The beaconing effect

on this time scale was not significant and could not be observed in the data.

Also, the beacon effect normally did not occur until a few seconds after the

threshold effect.
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Results

The results of both methods for determining the shape oscillation

thresholds are shown in Fig. 61.

Experimental Thresholds
0 8 I I I I I

0.6

HO
0.4 ""

C12
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0 20 40 60 80 100
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Figure 61: Experimental thresholds for radial instabilities. Representitive error bars are
shown. (Pressure -1% error, Radius - 3% error)

The figure represents an applied acoustic pressure vs. bubble radius plot

which shows the point at which the bubble exhibited non-spherical

pulsations. The numbers near the threshold curve represent the frequency

of the shape oscillation.
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Figure 62: Experimental thresholds vs. analytic prediction.

Figure 62 shows the comparison between the experimentally obtained

thresholds and the analytic solution to the theoretical prediction. Note that

for bubbles larger than about 40 microns, the order of magnitude of the fit is

fairly good. (It is interesting that the shape of the curve is similar but

seems to be shifted in radius.) It can also be seen that the predicted

frequencies for the shape oscillation match well with the experimental

data. For the smaller bubbles, the analytic-solution fit is poor and could be

attributed to the ignoring of surface tension terms in the analytic solution,

as discussed in Chapter IV.
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Figure 63: Experimental thresholds vs. numerical prediction.

Figure 63 shows a comparison between the experimentally-obtained

thresholds and a numerical solution to the theoretical prediction. Here

again the order of magnitude of the fit is quite good. Also, the general

trends are similar but are shifted in radius.

Thus, we are confident that the theoretical prediction is at least

qualitatively correct in determining where the thresholds for surface

oscillations occur. Differences between theory and experiment could be due

to assumptions made in the theory as outlined earlier.



Summary

The aim of this dissertation was to analyze the surface-wave threshold

phenomenon exhibited by an acoustically driven air bubble in water. To

accomplish this task, a theoretical development leading to a simplified set

of equations describing the pulsating motion of an air bubble was given in

early part of the dissertation.

Next, presentation and refinement of an analytical solution to the equations

of motion was discussed and presented in graphical form. Then, in an

attempt to improve upon the analytical solution, a direct numerical

integration was preformed on the equations of motion. It was shown that

the numerical integration, which contained terms ignored by the analytical

solution, produced a different threshold curve for the smaller bubbles.

Then, experimental results of the shape oscillation thresholds were given

and compared to the the theoretical predictions. It was seen that while the

theoretical results predicted general trends, there were regions where the

peaks and valleys, in the graphical representations, did not exactly match.

Possible explanations for these small discrepancies were presented and
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discussed. The major cause, in my opinion, to the discrepancies between

theory and experiment is due to the modeling of the pressure inside the

bubble by a polytropic approximation. More exact theories have been

recently developed to model the pressure inside the bubble using

thermodynamic considerations and could be employed in the future to

generate other threshold curves. This study also provided experimental

verification of the theory of Mie scattering, thus affording a precise means

of studying the oscillating behavior of a small (lO-lO0) bubble. Further, by

using the techniques developed in this study, an extension of this study to

examine the actual character of the shape oscillations, radial transients,

and chaotic behavior could be more easily undertaken.

Finally, in conclusion, this study has shown that in order to obtain an

adequate theoretical treatment of the surface wave threshold phenomenon,

a direct integration technique, including surface tension terms, is needed.

It has also been shown, in general, that the theoretical predictions of the

surface wave thresholds are in general agreement with the experimental

data.



Appendix A

Rectified Diffusion Growth Rates

Whenever an experiment is done, there is always extra information

obtained that is not directly related to the original experiment. This

experiment was no exception. When using the "first" method (described in

the section on shape thresholds), growth rates of a spherically pulsating,

driven air bubble in water were obtained. The mechanism whereby a

pulsating bubble increases its size in a saturated liquid is known as

rectified diffusion. Rectified diffusion is a process whereby the average

volume of a bubble either grows by pumping air from the liquid into itself or

decays by losing air to the surrounding liquid. Qualitatively, this can be

described as follows: When the pressure inside the bubble is slightly less

than the pressure in the surrounding liquid, then air will diffuse into the

bubble. When the converse is true, air will diffuse from the bubble into the

liquid. For a pulsating bubble, during the positive pressure driving cycle,

the bubble is at its smallest volume, and therefore its smallest surface area.

During this phase, the pressure inside the bubble is greater than the
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pressure in the liquid, so air will diffuse from the bubble out into the liquid.

During the negative pressure cycle, the bubble is at its maximum volume,

hence its largest surface area, and the pressure inside the bubble is less

than the pressure in the liquid, so air will diffuse into the bubble. Since the

amount of air diffused into or out of the bubble depends on the surface area

of the bubble, it is seen that the bubble will gain more air than it loses over

each cycle (assuming the diffusion rate to be constant). The driving

pressure threshold for this effect to occur is known as the growth by

rectified diffusion threshold. The rate at which the bubble grows is known

as the rectified diffusion growth rate.

We were able to measure the rectified diffusion growth rate of a variety of

bubbles. Figures Al, A2, A3, and A4 show the average radii of four

different bubbles growing by rectified diffusion as a function of time. The

asterisks represent the data and the two curves represent two different

rectified diffusion theories (Crum and Hansen, 1982, and Church, 1989).

As the actual theories will not be explained here, the interested reader is

directed to the references. The Crum and Hansen theory is a linearized

theory while the theory of Church includes nonlinear effects such as

streaming. The figures show that for slow growth rates (i.e., near the

rectified diffusion growth threshold) and low pressures, both the linear and

the more general theory predict the experimental results. For higher

pressures and for faster growth rates, however, the linear theory works

only when the bubble is not near a radial resonance. Church's theory, with
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or without considering the streaming phenomenon, more precisely predicts

the experimental results. These results are simply presented here. A

more detailed analysis may be made in a later study.
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Figure Al: Rectified diffusion case #1
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Figure A2: Rectified diffusion case #2
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Appendix B

In this appendix, a derivation of the scattering amplitudes is given utilizing

Mie theory. This theory deals with the scattering of a plane

electromagnetic wave by an isotropic, homogeneous sphere of arbitrary

size. Briefly, the theory nriy be derived as follows.

Beginning with Maxwell's equations for a plane wave in a homogeneous,

isotropic medium (water) impinging on a non-conducting sphere (bubble)

with no currents or free charges, one may write the equations as

VxE+ L = 0 (B.1)

aD
VxH- = (B.2)

at

V • D = 0 (B.3)

V•B=O (B.4)

where D = .E and B = H.
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Since these equations can be written in terms of a vector potential, A, and a

scalar potential, 0, if we assume that A is proportional to a time-varying

potential (named the electric Hertz vector, Hi1)

A = g (B.6)

we find that

B = pzV -(B.7)at

and

E = -re- Xa .(B.8)

Since 0 must satisfy the wave equation, 0 = -V * i. An alternate solution,

n2, (named the magnetic Hertz vector) to Eq. (B.6) may be chosen as well, so

that the vector quantities can be written as

[-h (B.9)B1 = WtV x-@TI(B9
a t

E = (V*H I) - a~l1(B.10)

D=[-a2 (B.11)



164

a~r12(B.12)H2 = V(V * _T'I2) -at2312

Since D = eoE + P, the wave equations for I and nl2 can be written as

V2fL1 "- = -- (B.13)

v2r12 - 9 = -M (B.14)

where M is the magnetization and P is the polarization.

The vector potentials can now be written in terms of scalar potentials

(referred to as the Hertz-Debye potentials) such that

1I =-V * fI (B.15)

fr2 =-V l2 (B.16)

Equations (B.15) and (B.16) are solutions to the scalar wave equation

d2ri
V2II - -= 0 . (B.17)

In terms of these scalar potentials, the components of the field vectors in

spheric7l coordinates are given by (Kerker, 1969)
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Er - ar 2 -+ k 2rFli (B.18)
ar 2

EO = a2(rli) 1C2 a(r-2) (B.19)
rara0 r sine a4
1 a2(rl) 1C2 a(rl-12) (B.20)

r sine Drao r aO

and

a2(rHl2)
Hr (r2+k2r-2 (B.21)

= - r a(rnLl) 1 a 2 (r- 2 )

r sine ao r Drae

q = a(rni) 1 a2(r-I 2 )
H-r NO + iOaa (B.23)

er sine DrS

where the propagation constant is given by

k2 = -1Kl12 = o2e (B.24)

with

Ki = (B.25)

IC2 = iW. (B.26)
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Solution to the scalar wave equation

If we assume a sinusoidal time dependence of eiwt in Eq. (B.17), then the

scalar wave equation becomes

V2 + k2 n = 0 (B.27)

where

l = icei ot . (B.28)

Considering that the potential 7c may be considered a product of three

coordinate functions, x may be expressed in spherical coordinates by

n = R(r)e()'D(W). (B.29)

The well-known functional forms of Eq. (B.29) are

d2 rR(r) + [k2 n(n+1) rR(r = 0 (B.30)

1 I d~) r m2 11 d0 0 dO(0), ms2 )().0(B31

-~ _--sin(0) - + n(n+l)-- -(0)=0 (3.31)
sinO d0 dO sin 2oJ

d(O) + m2 (4) = 0 (B.32)
d0 2



167

where n is an integer and m ranges from -n to n. The solutions to Eq. (B.30)

are the Ricatti-Bessel functions:

Wn(kr) = (nkr/2)' 2 Jn+1 2(kr) (B.33)

Xn(kr) = -(nkr/2) VI2 Nn+1 (kr) (B.34)

where Jn+112(kr) and Nn+112(kr) are the half-integral order Bessel and

Neumann functions. Note that a linear combination of these solutions can

be written as

(22)
Cn(kr) = VnI(kr) + i~n(kr) = (nkr/2)1I2H +?,(kr) (B.35)

where Hn(2) (kr) is the half-integral order Hankel function. This will be

used later. The solutions to Eq. (B.31) are the associated Legendre

polynomials given by

(O) = p(M) (cosO). (B.36)

The solutions to Eq. (B.32) are sin(mo) and cos(mo).

The general solution to the scalar wave Eq. (B.17) in spherical coordinates

is simply the superposition of all the particular solutions:
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r 00r =(M) 
(B.37)

n=0 m=-n

r= f {cnVn(kr)+dnXn(kr)]p(1m)(cos0)[ancos(mO)+bnsin(m¢)]}.
n=O m=-nL

At the bubble/liquid boundary there is an incident field (E(), H(i)), an

internal field within the bubble (E(w), H(w)) and a scattered field (E(s), H(s)).

Thus we must have corresponding expressions for xt: 1(i), n 2 (i), n1 (w),

E2(w), and x 1(s), X2(s). The boundary conditions are thus expressed by

- [r t [r + w ) ]  (B.38)

4-~i + 2(S)] = r

im22kor(7jl(i) + 7rl(S)) = iml 2 korirl(w) (B.40)

im 2 2kor( 2(i) + 2(s )) = im22 korM2(w) (B.41)

where ko = 2n/ko is the propagation constant in free space and ml and m2

are the indices of refraction of the liquid and the air. Equation (B.37)

determines the constants in the boundary conditions. The potentials ni are

found to be

1 00 2n+1 (I)
= 1 (n 1 n(k2r)Pn (cosO)cosO 1.2r7.1(i) =--nl-- ) (.2

. ..... .. .. . = .. m m nunmumnnmuu mmuru 1u U l
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1 0 in-i 2n+1

1IE - " 2n+ 1))nin+ 1) in(k2r)P n (cosO)sin(n=1

kJ= 0-1 nn+1) an k2r) () (B.44)
n= 1

() 1 - in-i 2n+1 (1)
(S) = 1 00 , 1 bn~n(k 2r)Pn (cos0)sin0 (B.45)

n= 1

rlW--n__ "2nn+l) n inkr)Pn (cos0)cos# (B.46)

r 2(w)- : 2 n n+1) dnnkrPn)cssi (.7n= 1

r2(W) = 1..L in-i 2n+1() 47k12h 72 n(n+l) dn"n(klr)P. (cos)sin(.
n= 1

Given that the terms in the series are independent of each other, the

boundary conditions must hold for each corresponding term. This gives

four linear equations for an, bn, cn, and dn at the spherical surface, r=a:

m[(k2a) - ann'(k2a)] = cn(Vn'(kla) (B.48)

m[4n'(k2a) - bn~n'(k2a)] = dn(1 n'(kla) (B.49)

Njn(k2a) - ann(k2a) = cn n(k 1a) (B.50)

m2[WVn(k2a) - bnn(k2a)] = dnfn(kla) (B.51)

Only an and bn are of importance since we want only the scattering wave

coefficients.
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an = Vna)Wn'(P) - mVn(3)Nn'(a) (B.52)

mWant~jin'(D) - MxVn()Wn'(a)

bn - Mmn(a)Nfn'(P) - Vn(P)Vn'(a) (B.53)
mn(a)in'(0) - XVn(O)Cn'(a)

where m = k1/k 2, a = k2a = 27m2a/Ao, P = k1 a = ma and X0 is the wavelength

of the incident light in vacuum.

Far-field assumption

If we now make a far-field assumption so that k2r - n, then the radial

components of the fields fall off as (Wr 2 ) and can be neglected so that

H .!H ie- ik2r
m - k2 r S 2 COsOc (B.54)ie-k2r

H6 L - ieik2r S1 sino . (B.55)E M2- = k2r

The amplitude functions S 1 and S2 are given by

Si = 2n+1) (anxn(COS0) + bnTn(COS0)) (13.56)n ln(n+ 1
n=1

002n+ 1
)2= (ann(COS0) + bn7En(COSO)) (B.57)

n= n (n+) 
(ag 

n

where Rn and Cn are given by
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Pn (cose)
Rn(cose) = sine (B.58)

Tn(coso) = iP:(I)(coso) .(B.59)

These amplitude functions S1 and S2, are used in Chapter VI.
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Appendix D

This appendix contains the program listings for some of the programs used

in this experimental study. Those programs included are:

DTHRESH Analytic threshold solutions for shape oscillations

SOE Shape Oscillation Equation solver (Numerical thresholds)

MIENOS Mie scattering program

SLICE Program to generate color pressure slices

SHAPE Experimental process control and data acquisition program

205
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PROGRAM THRESH2

C THIS PROGRAM WILL CALCULATE THE CRUM & ELLER THRESHOLD PROBLEM

REAL* 4 R4

REAL*8 RMIN, RMAX, RINC, FREQ, NU, RHO, SIGMA, GAMA, PAINIT, PAFINAL, PAINC
REAL*8 OMEGA, OMEGA0, A, B, C, D, BETA, TO, T2, T4, T6, sl Is2, AA, PA, E
REAL*8 PA_SAVE, MU_PRIME, RO, TWOPI, ROOT, MUTOL, PASTEP, KAPPA
REAL*8 TMAX, TINC, T, RAVG

REAL*8 XCOF(5),COF(5),ROOTR(5),ROOTI(5)

INTEGER N, IER, J,II4,N_MIN,NMAX, JMIN,J_MAX

CHARACTER*40 FILENAME

LOGICAL CALGAM4A

EXTERNAL KAPPA

DATA TWOPI/6.2831853071796D0/

CALL SCRINI
CALL HEADER ( 'CRUM & ELLER SURFACE THRESHOLDS' )

CALL ASKR(IENTER MINIMUM BUBBLE RADIUS (MICRONS) (REAL) [10.0] -> ',

2 R4, 10.)
RIN-DBLE (R4) *1D.D-4

CALL ASKR(ENTER MAXIMUM BUBBLE RADIUS (MICRONS) (REAL) [100.01 ->

2 R4, 100.)
RMAX-DBLE (R4) * 1. D-4
CALL ASKR(ENTER BUBBLE RADIUS INCREMENT (MICRONS) (REAL) [1.0] ->

2 R4,1.0)
RINC=DBLE (R4) *I .D-4
CALL ASKR('ENTER DRIVING FREQUENCY (KHZ) (REAL) [22.22] -> IR4,
2 22.22)
FREQ-DBLE (R4)
FREQ=FREQ* 1000.DO

COEGA--TWOPI*FREQ

CALL ASKR('ENTER KINEMATIC VISCOSITY (CM^2/SEC) (REAL) [0.0091] -> IF
2 R4,0.0091)
NU=DBLE (R4)
CALL ASKR('ENTER LIQUID DENSITY (G/CM^3) (REAL) (1.01 -> ',R4
2 1.0)
RHO=DBLE(R4)
CALL ASKR(-ENTER SURFACE TENSION (DYN/CM) (REAL) [72.5] -> ,R4,

2 72.5)
SI4A=DBLE (R4)

CALL ASKR('ENTER AMBIENT PRESSURE PO (BAR) (REAL) [1.0 -> ,R4,1.0)
PO=DBLE (R4)
CALL ASKR(IENTER INITIAL PRESSURE PA (BAR) (REAL) [0.05] -> ,R4

2 ,0.05)
PAINIT-DBLE(R4)
CALL ASKR('ENTER FINAL PRESSURE PA (BAR) (REAL) f0.3] -> ,R4,
2 0.3)
PAFINALDBLE (R4)
CALL ASKR('ENTER PRESSURE INCREMENT PA (BAR) (REAL) [0.01] -> ,R4
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2 ,0.01)
PAINC-DBLE (R4)
CALL ASmR('ENTER POLYTROPIC EXPONENT (0.0=CALCULATED) (REAL) [1.41 ->',

2 R4,1.4)
GAMA-DBLE (R4)
CALGAMMA=R4. EQ. 0.0

CALL ASKR('ENTER ERROR TOLERANCE (REAL) (0.001] ->',R4,0.001)
MUTOL=DBLE (R4)
CALL ASKI('ENTER MINIMUM N VALUE (INTEGER) [2] -> ',N_MIN,2)

CALL ASKI('ENTER MAXIMUM N VALUE (INTEGER) [5] -> ',N_MAX,5)

CALL ASKI('ENTER MINIMUM J (INTEGER) [(] -> ',J_MIN,1)
CALL ASKI('ENTER MAXIMUM J (INTEGER) [3] -> ',JMAX, 3)
CALL ASK('ENTER BASE OUTPUT FILE NAME [THRESH.DAT) -> ',FILENAME,

2 'THRESH.DAT')

CALL HEADERC'CRUM & ELLER SURFACE THRESHOLDS')

CALL SAY('MINIMUM BUBBLE RADIUS (MICRONS) =',REAL(RMIN*1.D4))

CALL SAY('MAXIMUM BUBBLE RADIUS (MICRONS) =',REAL(RMAX*1.D4))
CALL SAY('BUBBLE RADIUS INCREMENT (MICRONS) =,REAL(RINC*1.D4) )

CALL SAY('DRIVING FREQUENCY (KHZ) =',REAL (FREQ/1000.DO))

CALL SAY('KINIMATIC VISCOSITY (Cm^2/SEC) =',REAL(NU) )

CALL SAY('LIQUID DENSITY (G/CM^3) ', REAL(RHO))

CALL SAY('SURFACE TENSION (DYN/CM) ',REAL(SIGMA))

CALL SAY('AMBIENT PRESSURE PO (BAR) =',RAL(PO))
CALL SAY( 'INITIAL PRESSURE (DIMENSIONLESS) =,REAL (PAINIT))

CALL SAY(' FINAL PRESSURE (DIMENSIONLESS) =',REAL (PAFINAL))

CALL SAY ('PRESSURE INCREMENT (DIMENSIONLESS) ',REAL(PAINC))

CALL SAY( 'POLYTROPIC EXPONENT (DIMENSIONLESS) =',REAL(GAMMA))

CALL SAY 'ERROR TOLERANCE (DIMENSIONLESS) =',REAL (MUTOL))

CALL SAY( 'MINIMUM N VALUE -',FLOAT (NMIN))

CALL SAY( 'MAXIMUM N VALUE =',FLOAT(NMAX))
CALL SAY 'MINIMUM J VALUE =',FLOAT (JMIN))
CALL SAY 'MAXIMUM J VALUE =',FLOAT(JMAX))

TYPE *, ' BASE FILE NAME - ',FILENAME

CALL PROMPT ( 'PROCESSING . . . ',0)

OPEN (UNIT=!, NAME=FILENAME (1: INDEX (FILENAME,'.')) //'STATS',

2 STATUS='NEW')

CALL OUT(1, 'MINIMUM BUBBLE RADIUS (CM) =',REAL(RIN*1.D4))

CALL OUT(1, 'MAXIMUM BUBBLE RADIUS (CM) =',REAL(RMAX*I.D4))
CALL OUT(l, 'BUBBLE RADIUS INCREMENT (CM) =l,REAL(RINC*I.D4))

CALL OUT(1, 'DRIVING FREQUENCY (KHZ) =',REAL(FREQ/1000.DO))
CALL OUT (1, 'KINIMATIC VISCOSITY (CM^2/SEC) ',REAL (NU))

CALL OUT(1, 'LIQUID DENSITY (G/CM^3) =',REAL(RHO))

CALL OUT(, 'SURFACE TENSION (DYN/CM) =',REAL(SIGMA))

CALL OUT (1, 'AMBIENT PRESSURE PO (BAR) =', REAL(PO))

CALL OUT(l, 'INITIAL PRESSURE (DIMENSIONLESS) =',REAL(PA_INIT))

CALL OUT(1, 'FINAL PRESSURE (DIMENSIONLESS) =',REAL(PAFINAL))
CALL OUT(1, 'PRESSURE INCREMENT (DIMENSIONLESS) ',REAL(PA INC))

CALL OUT(1, 'POLYTROPIC EXPONENT (DIMENSIONLESS) =',REAL(GAMMA))

CALL OUT(1, 'ERROR TOLERANCE (DIMENSIONLESS) =',REAL (MUTOL))

CALL OUT(1, 'MINIMUM N VALUE =',FLOAT(N MIN))

CALL OUT(1, 'MAXIMUM N VALUE =',FLOAT(N MAX))

CALL OUT(1, 'MINIMUM J VALUE =',FLOAT (J_MIN))

CALL OUT(1, 'MAXIMUM J VALUE ',FLOAT(JMAX))



WRITE (1, *) 'BASE FILE NAM4E - FILENAME

CLOSE (U1T1)

CALL LIB$INITTIMER

PO=PO*1 .D6

PA_-INIT-PA INIT*1.D6

PAFINAL-PAFINAL*1 .D6
PAINC-PAiNc*1.06

00 M-N_?4N, NMAX,1I

DO J-JMIN, J-lAX, 1

OPEN (UNI-1, NAKE=FILENA4E (1: INDEX (FILENAME, -)-J _N//

2 CHAR (N+ICHAR 00') )/ /' _J//CHAR (J+ICHA ('0 ) ) //
2 FILENAME (INDEX (FILENAE, ))STATUS='NEW')

Do Ro=RiN, RHAx, RINC

PASAVE=0
14UPRIME=2* (N+2) * (2*N+1) *NU/ (OMEGA*RO*Ro)

IF (CALGANMA) GAMAKAPPA (PO, FREQ, RoI

PA-PAINIT
PASTEP=PAINC
DO WHILE (PA. LE. PAFINAL)

OHEGA0-'SQRT (3 *GAMA*Po/ (RHo*Ro*Ro))
BETAc*4EGA/ck4EGA0

A.A=PA/ (3*GAMMA*Po* (BETA*BETA-1)

A=4*SIGA* (N+2) *(N*N-1) / (RHOOGME,.*CEGA*Ro*Ro*RO)

a= (3*G.1oMp+1-BEA*BETA) /4
c- (3*AmeA+ +5*BETA*BETA) / (4 * (1-4*BETA*BETA))
D= (12* (3*GAMM+1+11*BETA*ETA) *C- (3*GA1M1A+l) *(3*GAI4MA+2)

2 ) / (24* (1-g*BETA*BETA))
TO=A+ (3*A* (1-B) -(2*N+2 .500)) *AA*AA
T2- (2*N+1-1 5DO*p) *AA+ (3*A* (2*B+C-1 .2500) 3*C+0.75D0-

2 (N+0.5D0) * (5*C+2*Ba.5DO) ) *AA*AA*AA
T4- (1.5DO*A* (1-C) +0. 75DO+ (N+0. 5DO)* (8*c-1) )*AA*AA

T6-(A*(3*C-1.5DO*D1.25)+3*c-0.75DO+(N+0.5DO)*(18*o+0.5DO-
2 5*C) )*AAk*AA*AA

IF (J. EQ. 1)THEN
Sl=T2/2+T2*T4/8+T4*T6/24

E-TO/2-0. 5o0+T2*T2/16+T4*T4/12
XCOF (1) =E*E-S1*Sl

XCOF (2) =0

XCOF (3)-1 +(E*T2 *T2) /(4 *S1*Sl)

XCOF (4) -0

XCOF (5)(-TM/ (2 *S1) 4 */ 4

ELSE IF(J.EQ.2)THEN
SI-T4/4-T2*T2/16+T2*T6/24

E=TO/4-1-T2*T2/24+T4*T4/128+T6*T6/4O

XCOF (1) =E*E-Sl*Sl

XCOF (2) =0
XCOF (3)=1 +(E*T4 *T4) /(32 *S1*S1)

XCOF (4) =0
XCOF (5) -(T4 / (4 *S1) 4 **/16

ELSE IF (J. EQ. 3) THEN



Sl=T6/6-T2*T4/24

E=TO/6-1 .5D0-T2*T2/96-T4*T4/60+T6*T6/432

XCOF (1) =E*E-Sl*Sl
XCOF (2) -0

XCOF (3) =1+ (E*T6*T6) /(108*S1 *Sl)

XCOF (4) =0
XCOF (5 =(T6/ (6*Sl) 4 */ 3 6

ENDIF
CALL SOLVE (XCOF, COF, 4, ROOTR, ROOTI, IER)

C CALL DPOLRT (XCOF, COF, 4, ROOTR, ROOTI, IER)

C IF (IER.NE. 0) THEN

C TYPE '.ERROR IN DPOLRT, IER= , IER

C TYPE *,R, PA=.,RO, PA

C GOTO 10
C ENDIF

ROOT-ROOTR (1) ! FIND CLOSEST ROOT TO MUPRIME

DO I =2, 4, 1
IF(AS(ROOTR (I) -MUP RIME) .LT. ABS (ROOT-MUP PRIME) .AND.ROOTR(I)

2 . GT. 0) ROOT=ROOTR (1)
END DO

IF (ROOT. GE.NMUPRIME) THEN

IF (ABS (ROOT-MU PRIME) . LE. MUTOL) THEN

PASAVE=PA

GOTO 11 ! FOUND THRESHOLD!

ENDIF

PA=MAx (PA-PASTEP, PAINIT)

PASTEP=PASTEP/2 !HALVE STEP SIZE

PA--MAX (PA-PASTEP, PAINIT)

IF(PASTEP. LT. PAINC/100000) THEN

c TYPE ',UNABLE TO OBTAIN DESIRED TOLERANCE IN 50000 HALVES'

C TYPE #, RO, MU_-PRIME=$, REAL(RO-1.D4) ,REA(MUPRIME)

C TYPE '~ROOT= RAL (ROOT)

PASAVE-PA ! GIVE VALUE ANYWAY

GOTO 11
ENDIF

ENDIF

10 PA-PA+PASTEP

END DO !PA
GoTo 12

C IF (ROOT. GT.MUPRIME) THEN !NO THRESHOLD

C PA_-SAVE=PAINIT
C ELSE

C PASAVE=PA FINAL
C ENDIf-

11 TMAX'=.DO/22220.DO
TINC-TMAX/200
RAVG0

1=0

DO T'0. DO, TMAX,TINC

RAVG=RAVG+RO* ( (1.AA*AAMB) +AA*COS (OMEGA*T) +AA*AA*c*

2 COS (2*OMEGA*T) +AA*AA*AA*O*Cos (3 *OEGA*T)

I-1+1
END DO

RAVG-RAVG/ I
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WRITE (1,*)REAL(RO*I.D4), REAL(RAVG1I.D4), REAL (PASAVE*1.D-6), I
2 REAL (ROOT-MU_PRIME)

12 CONTINUE

END DO !RO

CLOSE (UNIT=l)

END DO !J
END DO !I

CALL LIB$SHO-TIMER
CALL EXIT5

SUBROUTINE SAY (STR, VAL)
CHARACTER* (*) STR

REAL*4 VAL

IF(ABS(VAL) .LT.32767)THEN
IF(IFIX(VAL) .EQ.VAL) THEN

TYPE *,STR,IFIX(VAL)
RETURN

ENDIF
ENDIF

TYPE *,STR,VAL I
RETURN

SUBROUTINE OUT (CHAN, STR, VAL)
INTEGER CHAN

CHARACTER* (*) STR I
REAL*4 VAL

IF(ABS(VAL) .LT.32767)THEN
IF (IFIX (VAL) . EQ.VAL) THEN

WRITE (CHAN, *) STR, IFIX (VAL)
RETURN

ENDIF
ENDIF

WRITE (CHAN, *) STR, VAL

RETURN
END3

SUBROUTINE SOLVE (XCOF, COF, NEQ, ROOTR, ROOTI, IER)

REAL*8 XCOF(1) ,COF(1) ROOTR(1) ,ROOTI(1)

INTEGER NEQ, IER

COMPLEX*16 A,B,C,MU

IER-0 3
A-DcMPLX (XCOF (5))

B=DCMPLX (XCOF (3)) I
C=DCPLX XCOF(i)
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MU-SQRT( (-B+sQRT(B*B-4*A*C) )(2 *A))
ROOTR (1) DRE.AL 04U)
ROOTI (1) =DIMAG (MU)

ROOTR (2) =DPEAL (-MUJ)

Roani (2) =DIMAG (-MU)

4U=SQRT ( (-B-sORT (B*B-4 *A-C) )/(2 -A)

ROOR (3) -DREAL (MU)
ROO'rI (3) ODIMAG (MU)

ROMT (4) ODREAL (-HU)

RooTi (4) =DimAG(-mu)

RETURN
END



212

PROGRAM SOEDOUBLE

C

C THIS IS A PROGRAM TO EVALUATE THE SHAPE OSCILLATION EQUATION FOUND IN:

C BUBBLE PHENOMENA IN SOUND FIELDS: PART TWO BY A. PROSPERETTI

C IN THE ACOUSTIC CAVITATION SERIES: PART THREE

C

C R(THETA, PHI;T) = R(T) + SUM(L,M) (ALM(T) YLM(THETA, PHI)

C R(THETA,PHI;T) = R(T) + AN(T)PN(COS(THETA))

C

C WHERE AN ARE THE COEFFICIENTS TO BE CALCULATED AND PN IS A LEGENDRE POLYNOMIAL
C WE ASSUME. THAT WE HAVE AXISHMETRY (IE. THE BUBBLE SHAPE IS AXISY METRICAL)

C

C THE COEFFICIENT EQUATION IS:

c
C DDAN + [ 3DR/R + 2 (N+2) (2N+I) (MU/ (RHO*R^2)) ]DAN +
C (N-1)*[ -DDR/R + (N+1) (N+2) (SIGMA/(RHO*R^3)) +

C 2 (N+2) (MU*DR) / (RHO*R^3) I AN = 0

c
C WHERE "D" MEANS FIRST TIME DERIVATIVE AND "DO" MEANS SECOND TIME DERIVATIVE

c

C AN = LEGENDRE COEFFICIENTS

C MU = VISCOSITY OF LIQUID

C N = MODE NUMBER = 1 TRANSLATION

C > 1 SHAPE MODE

C R = MEAN BUBBLE RADIUS AS CALCULATED FROM RPE

C RHO = DENSITY OF LIQUID

C SIGMA = SURFACE TENSION BETWEEN LIQUID AND AIR BUBBLE

C
C TO SOLVE LET

C

C Y3 = AN

C Y4 = DAN
C

C THEN CONVERT TO 2 COUPLED FIRST ORDER EQUATIONS:

C

C DY3 
= 

Y4

C DY4 = - f 3DR/R + 2(N+2) (2N+I) (MU/(RHO*R^2)) ]Y4 -

C (N-1) [ -DDR/R + (N+1) (N+2) (SIGMA/ (RHO*R^3)) +

C 2(N+2) (MU*DR)/(RHO*R^3) IY3

C

C THE RPE IS ALSO SOVLED BY 2 COUPLED FIRST ORDER EQUATIONS:
C

C SOLVE THE RAYLEIGHT-PLESSET EQUATION USING THE POLYTROPIC APPROXIMATION
C

C R DDR + 3/2 DR**2 = 1/RHO [ PI - P(T) - 2SIGMA/R - 4MU/R DR
C

C ASSUME POLYTROPIC APPROX: Pi = Po(Ro/R) ̂3GANMA
C P(T) - PINF(1-NU SIN(OMEGA T)

C PO-PINF = 2SIGMA/Ro (NO TRANSFER)

C R = R*X

C RESULTING EQUATION BECOMES:

C

C DDX = -1.5*DX^2/X + 1/(RHO*RO^2*X) fPo*X^-3GAMMA
- 
(Po-2SIGMA/RO) (1-

C NU*SIN (OMEGA*T)) -2SIGMA/(RO*X) -4MU*DX/X]

C
C WHERE DX MEANS DERIVATIVE OF X WITH RESPECT TO T
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C DDX MEANS 2ND DERIVATIVE OF X WITH RESPECT TO T

C

C CONVERT TO 2 COUPLED FIRST ORDER EQUATIONS

C
C LET Y1= X

C Y2 =DX

C
C DYI - Y2

C DY2 - -I.5*Y2^2/YI + I/(RHo*RO^2*Y1) [Po*YI^-3GAMMA-(Po-2sIcMA/Ro) (1-

C NU*SIN (OMEGA*T) )-2SIGK4A/(RO*Yl) -4MU*Y2/YI]

C

C WHERE

C PINF AMBIENT PRESSURE

C RHO DENSITY OF THE LIQUID

C RD INITIAL BUBBLE RADIUS

C C4EGA DRIVING FREQUENCY
C SIGMA INTERFACIAL TENSION (AIR BUBBLE IN WATER)

C MU VISCOSITY OF LIQUID

C NU DRIVING FREQUENCY PRESSURE AMPLITUDE (DIMENSIONLESS

C AS A FACTOR OF PINF NORMALLY 1)
C GAMMA POLYTROPIC EXPONENT
C

c
C COMBINING ALL 4 EQUATIONS GIVES:

C

C DY1 
= 

Y2
C DY2 

= 
-I.5*Y2^2/YI + I/(RHO*RO^2*Yl) (PO*YI^-3GAmMA

-
(PO

-
2SIGMA/Ro) (1-

C NU*SIN (OMEGA*T) ) -2SIGmA/ (RO*YI) -4MU*Y2/YI

C DY3 - Y4

C DY4 = -(3Y2/YI+2(N+2) (2N+I)KU/(RHO*RO^2*YI^2) ]Y4 - (N-i) I-DY2/YI +

C (N+I) (N+2) SIGMA/ (RHO*RO^3*YI^3) + 2 (N+2)MU*Y2/(RHO*RO^2*YI^3) jY3
C

C

C THE INPUTS TO THIS PRCGRAM CAN EITHER BE INTERACTIVLY ENTERED OR FROM
C A BATCH FILE. THE INPUTS FROM A BATCH FILE ARE THE SAME AS THE INTERACTIVE

C CCIl*ANDS. THE PROGRAM WILL OUTPUT A NUMBER OF FILES DEPENDING ON THE

C ANSWERS GIVEN IN THE INPUT.

C (NOTE THAT "ASE" IS THE FIRST PART OF THE FILENAME GIVEN IN THE INPUT.)

C

C FILE NAME WHEN OUTPUT DESCRIPTION

C BASE.DAT WHEN RT CURVES ARE SPECIFIED CONTAINS THE FOLLOWING:

C T, R, V, A, DA

C T=TIME(PERIODS) , R=RADIUS(CM)

C V=RADIAL VELOCITY (CM/S),

C A=SURFACE OSCILLATION AMPLITUDE

C DA=SURF. OSC. VELOCITY
c

C BAsE.DRIVE WHEN RT CURVES ARE SPECIFIED CONTAINS THE TIME(PERIODS) , AND

C THE DRIVE AMPLITUDE IN AMBIENT

C PRESSURE UNITS

C

C BASE. STATS ALWAYS CONTAINS INFORMATION ABOUT

C THE INPUTS TO THE PROGRAM

C
C BAsE.RSECT ALWAYS CONTAINS THE R AND DR SECTION
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C POINTS IN (CM) AND (CM/S)
C SECTION POINTS ARE CALCULATED

C AT THE END OF EACH DRIVING

C PERIOD.

C

C BASE.ASECT WHEN MODE <> 0 CONTAINS THE A AND DA SECTION
C POINTS IN ARBITRARY UNITS.

C SECTION POINTS ARE CALCULATED

C AT THE END OF EACH DRIVING

C PERIOD.

IMPLICIT REAL*8 (A-Z)

CHARACTER*1 CH

LOGICAL BATCH,RT
INTEGER NEQ, METHOD, POINTS, EXTEND

COMMON /MAIN/ MU, NU, OMEGA, SIGMA, GAM.MA, RHO, RO, PO, TOL, METHOD, NEQ, POINTS,

2 EXTEND, RT, PINF, FPEQ

COMMON /SIMPLE/ Cl,c2,c3,C4,C5,C6,C7,C8,C9

COMMON /INITIAL/ YIINIT,Y2_INIT,Y3_INIT,Y4_INIT,TMIN,TMAX,TINC,TSKIP

TYPE 1

FORMAT(' INTERACTIVE OR BATCH (I/B)? S)
ACCEPT ' (Al) ,CH

ATCH-CH. EQ. 'B I. OR. CH. EQ. 'B'

CALL READVALUES (BATCH)

CALL LIB$INITTIMER

CALL SOLVE

IF ( .NOT. BATCH) CALL PROMPT ( 'DONE. ,0)

CALL LIBSSHOW TIMER

IF (RT) THEN

CLOSE (UNIT=l)

CLOSE (UNIT=3)

ENDIF

CLOSE (UNIT=10)

IF (NEQ. GT. 2) CLOSE (UNIT=ll)

CALL EXIT

END

SUBROUTINE SOLVE

IMPLICIT REAL*8 (A-Z)
INTEGER NEQ, IDO, IMETHOD, IWK (4) ,INDEX, IER, METH,MITER, NUMWRITE, POINTS

INTEGER OLDNEQ, EXTEND

DIMENSION Y(4) ,PARAM(50) ,WK(100)
LOGICAL STEADY, STEADY_STATE, FIRST, RT

COMMON /MAIN/ MU, NU, OMEGA, SIGMA, GAMMA, RHO, RO, PO, TOL, METHOD, NEQ, POINTS,

2 EXTEND, RT, PINF, FREQ

COMMON /SIMPLE/ CI,C2,C3,C4,C5,C6,C7,C8,C9
COM1ON /INITIAL/ YlINIT,Y2_INIT,Y3_INIT,Y4_INIT,TMIN,TMAX,TINC,TSKIP
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I EXTERNAL FCT, FCNJ, STEADYSTATE

DATA RTOL/I.D-6/,VTOL/0.1D0/

Y(1)=YI INIT + 1 !INITIAL CONDITIONS (T=O)

Y (2) -Y2 INIT

IF (NEQ.GT. 2) THEN
Y(3)=Y3_INIT + 1
Y (4) =Y4_INIT

ENDIF

DO I=, 50, 1 !DEFAULT PARAMETERS
PAR-M ( I) =0. 0

END DO

PARAM (4) =1. E7 !MAX STEPS3 PARAM (1O) = 1.0 !ABSOLUTE ERROR CONTROL

IDO = 1
INDEX = 1

X=TMIN

H=TINC/100.
METH-2

MITER=0
I NUM_WRrTE=O

STEADY=. FALSE.
FIRST

= 
. TRUE.

3 C FIND STEADY STATE SOLUTION FOR R

OLDNEQ=NEQ

NEQ=2

DO T=TMIN+POINTS*TINC,TMAX,TINC*POINTS !SECTION POINTS ONLY

XEND-T
IF (METHOD. EQ. 1) THEN

CALL DIVPRK(IDO, NEQ, FCT, X, XEND, TOL, PARAM, Y)

IF (IDO. NE. 2) THEN

TYPE *, 'ERROR, IDO=' , IDO

TYPE *,HTRIAL = ',PARAM(31)
TYPE *,'NSTEP = ',PARAM(34)

TYPE *,'NFCN = ',PARAM(35)

DO I=1, NEQ, 1
TYPE *, -Y = ',Y(I)

END DO
STOP

ENDIF
ELSE

CALL DGEAR(NEQ, FCT, FCNJ, X, H, Y, XEND, TOL, METH, MITER,

2 INDEX, IWK, WK, IER)

IF (INDEX. NE. 0) THEN

TYPE *, 'ERROR IN DGEAR, INDEX <> 0'
TYPE , 'XEND=' ,XEND
TYPE *,'H-',H
STOP

ENDIF

IF (IER.GT. 128) THEN

TYPE *, 'ERROR IN DGEAR, IER > 128'
TYPE *, 'IER=',IER

TYPE *,'XEND=',XEND

I
I
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TYPE *, 'H-',H
STOP

ENDIF
ENDIF

IF (X. GT. TSKIP) THEN

IF (FIRST) THEN
R_SECT_ =Y(1)
V_SECT_ =Y(2)

RSECT0-1.E30
V SECT_0=1.E30

WRITE (10, *) REAL (RO*RSECT_1) REAL (RO*VSECT_1)

FIRST-.FALSE.
ELSE

R SECT 2=Y(1)

VSECT_2=Y(2)
IF(ABS(R__SECT 1-R SECT_2) .LE.RTOL.AND.

2 ABS (VSECT_1-VSECT_2) .LE.VTOL) STEADY=.TRUE. !PERIOD 1

IF(ABS(RSECT_0-RSECT_2) .LE.R TOL.AND.

2 AS(VSECT_0-VSECT_2) . LE. VTOL) STEADY=. TRUE. !PERIOD 1/2

RSECT 0=R SECT_1

VSECT 0=V SECT 1
R_SECT 1=R SECT 2

V SECT 1=V SECT_2

WRITE (10, *) REAL (RO*RSECT_2) REAL (RO*V_SECT_2)
ENDIF

IF(STEADY)GOTO 99
ENDIF

END DO
IF( .NOT. STEADY) THEN

TYPE *, STEADY STATE NOT REACHED'
RETURN

ENDIF

99 CONTINUE

C STEADY STATE REACHED, NOW PERTURB A's (IF NEEDED)

NEQ=OLDNEQ

IDO 1
INDEX = 1

TMAX-EXTEND*TINC*POINTS

IF (. NOT. RT) TINC=TINC*POINTS !SECTION OUTPUT ONLY

DO T=X+TINC, X+TMAX, TINC
XEND-T

IF (METHOD. EO. 1) THEN

CALL DIVPRK (IDO, NEQ, FCT, X, XEND, TOL, PARAM, Y)

IF (IDO.NE.2) THEN
TYPE *, ERROR, IDO=',IDO

TYPE *,'HTRIAL = ',PARAM (31)
TYPE *,'NSTEP = ',PARAM(34)

TYPE , 'NFCN - ',PARAM(35)
DO I=,NEQ, 1

TYPE *,I'Y = ',Y(I)
END DO
STOP

ENDIF

ELSE

CALL DGEAR(NEQ, FCT, FCNJ, X, H, Y, XEND, TOL, METH, MITER,

2 INDEX, IWK, WK, IER)
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IF (INDEX. NE. 0) THEN

TYPE *, ERROR IN DGEAR, INDEX <> 0'

TYPE *,*XEND, XEND

TYPE *,H',H
STOP

ENDIF

IF (IER.GT. 128) THEN

TYPE ', ERROR IN DGEAR, IER > 128'
TYPE *, IER=',IER

TYPE *,SXEND= ,XEND
TYPE * 'H=',H
STOP

ENDIF
ENDIF

IF (RT) THEN
IF (NEQ. EQ. 2) WRITE (1, * REAL (X*FREQ) , REAL (RO*Y (1) , REAL (RO*Y (2)

IF(NEQ so.4)WRITE(1,*)REAL(X*FREQ),REAL(RO*Y(1) ,REAL(RO*Y(2)),

2 REAL(Y(3)) ,REAL(Y(4))
WRITE (3, *) REAL (X*FREQ) , REAL (PINF*NU*SIN (OMEGA*T)

NUMWRITE=NUMWRITE+I

IF (NUMWRITE. EQ. POINTS) THEN
NUMWRITE=O

WRITE(10,*)REAL(RO*Y(1)) ,REAL(RO*Y(2))

IF (NEQ.GT.2) WRITE (11, REAL(Y (3)) ,REAL(Y (4)
ENDIF

ELSE
WRITE(10,*) REAL (RO*Y (1) ),REAL(RO*Y(2)) SECTION R DR

IF(NEQ.GT.2)WRITE(11,*)REAL(Y(3) ),REAL(Y(4)) !SECTICN A DA
ENDIF

END DO

IDO = 3 !DONE
IF(METHOD.EQ.1)CALL IVPRK(IDO, NEQ, FCT, X, XEND, TOL, PARAM, Y)

RETURN
END

SUBROUTINE FCT (NEQ, X, Y, DERY)

IMPLICIT REAL*8 (A-Z)
INTEGER NEQ, METHOD

DIMENSION Y (NEQ), DERY (NEQ)

COMMON /MAIN/ MU, NU, OMEGA, SIGMA, GAMMA, RHO, RO, PO, TOL, METHOD

COMMON /SIMPLE/ cl,c2,c3,c4,c5,c6,c7,c8,c9

C Ci=(2.0*SIGMA) /Ro

c c2=Po-cl

C c3=4.0*MU

C C4=-3.0 *GAMA

C C5=RHO*RO*RO

c c6=2" (N+2) * (2*N+I) *MU/C5
C C7=((N+I) * (N+2) *SIGMA) /(C5*RO)

c c8=2* (N+2) *MU/C5

C C9=N-1

DERY (1) =Y (2)
DERY (2) -(-l. 5*Y (2) *Y (2) ) /Y (1) +(1. 0/(c5 *Y(1) ) (PO*Y (1) *C4 -

2 C2* (1. 0-NU*SIN (OMEGA*X)) (c +C3*Y (2) ) /Y (1))

IF (NEQ. GT. 2) THEN
DERY (3) =Y (4)
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DERY (4) -- (3.0O*Y (2) /Y (111 +c6/ (Y (111 Y (11) *Y (4) -C9* (-DERY (2) /Y (1) +m

2 (C7+C8*Y(2))/Y (i) **3) -Y(3) I
ENDIF

RETURN

ENDI

SUBROUTINE FCNJ (N,X, Y, PD)
INTEGER N

REAL*8 Y(N),PD(N,N),X 
RETURN

END

SUBROUTINE READVALUES (BATCH)

IMPLICIT REAL*8 (A-Z)
REAL* 4 R4

INTEGER PERIODS, POINTS, SKIP, MODE, NEQ, METHOD, EXTEND

CHARACTER*60 FILENAME

CHARACTER*1 CH
LOGICAL BATCH, RT

EXTERNAL KAPPA 1
COMMON /MAIN/ MU, NU, OMEGA, SI4A, GAMA, RHO, RO, PO, TOL, METHOD, NEQ, POINTS,

2 EXTEND, RT, PINF, FREQ
COMMON /SIMPLE/ cl,c2,c3,c4,c5,c6,c7,c8,c9

COMMON /INITIAL/ YI INIT,Y2_INIT,Y3_INIT,Y4_INIT,TMIN,TMAX,TINC,TSKIP

DATA TWOPI/6.2831853/

IF(BATCH) THEN I
TYPE 1

FORMAT(' ENTER INPUT DATA FILE NAME -> '$)
ACCEPT ' (A60) ',FILENAME

OPEN (UNIT=3, NAME-FILENAME, STATUS= 'OLD', READONLY)
2 FORMAT (lI)

3 FORMAT (G)

4 FORMAT (Al)

READ (3, 4)CH
METHODE O
IF(CH.EQ.'R'.OR.CH.EQ. 'R')METHOD=
IF (CH.• EQ. I G I . OR. CH. EQ. W ) METHOD=2

IF (METHOD. EQ. 0) STOP' INVALID METHOD SPECIFIED'
READ (3, 3) R4

RO'DBLE (R4)

READ (3, 3) R4

PINF=DBLE (R4)
READ (3, 3) R4

FREQ=DBLE (R4)

READ (3, 3) R4

RHO=DBLE (R4)
READ (3, 3) R4

SI =DBLE (R4)READ (3, 3) R4I
MU=OBLE (R4)

READ (3, 3) R4
NU-DBLE (R4 )m

READ (3, 2) PERIODS

READ (3,2) POINTS
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READ (3,2) SKIP

READ (3,3) R4

Y1_INIT-DBLE (R4)

READ (3,3) R4
Y2_INIT-DBLE (R4)

READ (3, 2) MODE

READ (3, 3) R4

TOL=DBLE (R4)

READ (3, 2) EXTEND
READ (3, 4) CH
RT=CH.EQ.'R' .OR.CH.EQ. R

READ(3, ' (A60) ')FILENAME
CLOSE (UNIT=3)

ELSE
CALL SCRINI

CALL HEADER ('SHAPE OSCILLATION EQUATION SOLVER')
CALL ASK('ENTER INTEGRATION METHOD (R=RUNGE-KUTTA, G-GEAR) [R] ->',

2 CH, 'R')
METHOD=I

IF(CH.EQ. 'G' .OR.CH.EQ. 'G') METHOD=2
CALL ASKR('ENTER INITIAL BUBBLE RADIUS (CM) [0.005] ->',R4,0.005)
RO=DBLE(R4)

CALL ASKR('ENTER AMBIENT PRESSURE (BAR) [1.01325] ->',R4,1.01325)

PINF-DBLE (R4)

CALL ASKR('ENTER DRIVING FREQUENCY (KHz) [22.22] ->'R4,

2 22.22)
FREQ=DBLE (R4)

CALL ASKR('ENTER DENSITY OF LIQUID (GRAMS/LITER) [1.0] ->',R4,1.)

RHO=DBLE (R4)

CALL ASKR('ENTER INTERFACIAL TENSION (DYNES/CM) [72.5] ->',

2 R4,72.5)
SIGMA=DBLE (R4)

CALL ASKR('ENTER VISCOSITY OF THE LIQUID (G/CM-SEC) [0.011 ->,

2 R4,0.01)
MU=DBLE (R4)
CALL ASKR( 'ENTER PRESSURE AMPLITUDE FACTOR (DIMENSIONLESS) '/

2 ' [1.0] ->',R4,1.)
NU=DBLE (R4)

CALL ASKI('ENTER MAXIMUM NLIfMER OF DRIVING FREQUENCY PERIODS [101 ->',

2 PERIODS, 10)
CALL ASKI( 'ENTER NUMBER OF INTEGRATION POINTS/PERIOD [1001 ->',

2 POINTS, 100)
CALL ASKI('ENTER NUMBER OF PERIODS TO SKIP [0] ->',SKIP,0)

CALL ASKR('ENTER INITIAL DISPLACEMENT (DIMENSIONLESS) [0.01 ->',

2 R4,0.0)
Y1_INIT=DBLE (R4)
CALL ASKR('ENTER INITIAL VELOCITY (DIMENSIONLESS) [0.01 -',

2 R4,0.0)

Y2_INIT=DBLE(R4)
CALL ASKI('ENTER MODE NUMBER (N > 2) [2] ->',MODE, 2)

IF (MODE. LE. 0) THEN

CALL PROMPT (RADIUS VALUES ONLY. ',0)
CALL WAIT

ENDIF

CALL ASKR('ENTER ERROR TOLERANCE (REAL) [0.0001] ->',R4,0.0001)

TOL-DBLE (R4)
CALL ASKI ( ENTER NUMBER OF CYCLES TO OUTPUT AFTER STEADY

2 STATE [201 ->',EXTEND,20)
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CALL ASK('RT CURVES OR SECTION CURVES (R/S) (SI ->',CH, 'S')

RT-CH.EQ. 'R' .OR.CH.EQ. 'R'

CALL ASK('ENTER OUTPUT FILE NAME (SHAPE.DATI ->',FILENAME, 'SHAPE.DAT')
ENDIF

NEQo4

IF (MODE. LE. 0) NEQ-2

Y3_INIT=0
Y4_INIT=0

PINF-PINF*1.0D6 !CONVERT TO CGS

FREQ=FREO*1000 !CONVERT TO HERTZ

CMEGA-TWOPI*FREQ !CONVERT TO ANGULAR RADIANS

PO-PINF+2*SIGMA/Ro
TMIN-0

TMAX- (1/FREQ) *FLOAT (PERIODS)

TINC- (1/FREQ) /FLOAT (POINTS)

TSKIP- (1/FREQ) *FLOAT (SKIP)

GAMKA-KAPPA ()
FREERES=I/ (TWOPI*RO) *SORT( (3*GAMMA*PO) /RHO)

OPEN (UNIT=1, NAME=FILENAME (1: INDEX (FILENAME, ' .' ) //' STATS',

2 STATUS
=
'NEW')

LUN=I

10 IF (METHOD. EQ. 1) THEN

WRITE (LUN,*) 'USING RUNGE-KUTTA METHOD'
ELSE

WRITE (LUN,*) 'USING GEAR METHOD'
ENDIF

WRITE(LUN,*) 'INITIAL PRESSURE (BAR) = ',REAL (PO/1. 0D6)

WRITE(LUN,*) 'DENSITY OF LIQUID (GRAMS/LITER) = ',REAL(RHO)

WRITE (LUN, *) 'INITIAL BUBBLE RADIUS (CM) = ',REAL (RO)

WRITE (LUN,*) 'DRIVING FREQUENCY (KHZ) ', REAL(FREQ/1000)

WRITE(LUN,*) 'INTERFACIAL TENSION (DYNES/CM) = ',REAL(SIGMA)

WRITE (LUN,*) 'VISCOSITY OF THE LIQUID (G/CM-SEC) = ',REAL(MU)

WRITE (LUN, *) 'PRESSURE AMPLITUDE FACTOR = ',REAL (NU)

WRITE(LUN, *) 'POLYTROPIC EXPONENT - ',REAL(GAMMA)

WRITE(LUN,*) 'MAX NUMBER OF DRIVING FREQ PERIODS = ',PERIODS

WRITE(LUN,*) 'NUMBER OF INTEGRATION POINTS/PERIOD = ',POINTS

WRITE (LUN,*) 'FREE RESONANCE FREQUENCY (KHZ) - ', REAL (FREERES/1000)

WRITE (LUN, *) 'DRIVING FREQ / RESONANCE FREQ = ',REAL (FREQ/FREERES)

WRITE (LUN,*) 'INITIAL DISPLACEMENT FROM EQUIL = ',REAL(Y1_INIT)

WRITE(LUN,*) 'INITIAL VELOCITY = ',REAL(Y2 INIT)

WRITE(LUN,*) 'SHAPE MODE NUMBER = ',MODE
WRITE(LUN,*) 'ERROR TOLERANCE = ',REAL(TOL)

WRITE(LUN,*) 'DATA FILE NAME '//FILENAME(1:20)

IF (LUN. EQ. 1) THEN
WRITE (LUN, *) 'EXTENDED CYCLES - ',EXTEND

IF(RT)WRITE(LUN,*) 'RT CURVES SPECIFIED'
WRITE (LUN, *) I**

WRITE (LUN, *) ' TMIN, TMAX, TINC ',REAL (TMIN) , REAL (TMAX), REAL (TINC)

CLOSE (UNIT-I)

IF (. NOT. BATCH) THEN

LUN-5

CALL HEADER(' SHAPE OSCILLATION EQUATION SOLVER')

GOTO 10
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ENDI F
ENDI F

IF (.NOT.BATCH) CALL PROMT ( PROC.SSING .. '0)

cl= (2 *SIGMA) IRa
c2=Po-cl
c3-4 *m4u

c4=-3*Gmm

c5-RHo*Ro*Ro

C6-2* (k400E+2) * (2*MODE+l) *MJ/C5
c7- ( (MODE+1) * (MODE+2) *si~m) / (c5*Ro)

C8=2* (MODE+2) *MU/c5

C 9=MODE- 1

IF (RT) OPEN (UNIT-i, NAME-FILENAI4E, STATUS= 'NEW')

OPEN (UNIT=2, NAME=FILENAME (1: INDEX (FILENAME, ')/DGEAR',

2 STATUS='NEW')
IF (RT) OPEN (UNIT=3, NMEFILENANE (1: NDEX (FILENAME, ))//DRIVE' ,
2 STATUS='NEW')

OPEN (UNIT=1 0,NAME=FILENA4E (1: INDEX (FILENAME, )//PRSECT',

2 STATUS=NEW')

IF (NEQ. GT.2) OPEN (UNIT11,NAME=FILENAME (1 INDEX (FILENAE,) I
2 'ASECT',STATUS-NEW)

RETURN
END

SUBROUTINE ASK(PRC*5P,RETVAL,DEFVAL)

CHARACTER* (*) PROMP, RETVAL,ODEFVAL

cHARAcTER*80 STR
EXTERNAL INPUT

CALL PRCMPT (PROMP, 0)

NCHAR=INPUT (STR, 80)

IF(NCHAR.EQ.0)THEN

RET_-VAL-DEFVAL
ELSE

RETVAL=STR(1:NCMAR)
ENDIF

RETURN
END

SUBROUTINE ASKI (PROMP, RETVAL, DEFVAL)
CHARACTER* (*) PRQ.IP

INTEGER RETVAL,DEFVAL

CHARACTER*80 STR

CALL PROM4PT (PROMP, 0)
NCHAR-INPUT (STR, 80)

DO WHILE (INDEX (STR, ).NE.0)

CALL ERRMSC( 'INVALID VALUE, ENTER AN INTEGER-)

CALL PR(KPT (PRCZ4P, 0)
NCHAR-INPUT (STR, 80)

END DO
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IF (NCHAR, EQ. 0) THEN

RETVAL-ULLAL
ELSE

DECODE (NCHAR, 1, STR) RETVAL

FORMAT(I)
ENDIF

RETURN
END

SUBROUTINE ASKR (PR*AP, RETVAL, DEFVAL)

CHARACTER*( *) PRCMP

REAL RETVAL,DEFVAL

CHARACTER*80 STR

CALL PROMPT (PROMP, 0)
NCHAR-INPUT (STR, 80)

DO WHILE(INDEX(STR, ).EQ.0.AND.NCHAR.NE.0)
CALL ERRMSG ( -INVALID VALUE, INCLUDE DECIMAL POINT')

CALL PROMPT (PROMP, 0)

NCHAR-INPUT (STR, 80)
END DO

IF (NCHAR. EO. 0) THEN

RET VAL=DEFVAL
ELSE

DECODE (NCHAR, 1, STR) RETVAL

FORMAT(G)
ENDIF

RETURN
END

SUBROUTINE PROMPT (STR, NUM)
C

C CALL: CALL PROMPT(STR, NUM)
C STR ASCIZ MESSAGE STRING

C NUM NUMBER OF DASHES TO PUT AFTER THE PROMPT

C THIS ROUTINE WILL OUTPUT A MESSAGE ON LINE 22 IN INVERSE SCREEN

C FORMAT. THE CURSOR WILL REMAIN AT THE END OF THE MESSAGE UPON RETURN.
C

CHARACTER* (*) STR
BYTE ESC
INTEGER NUM

DATA ESC/27/

TYPE 100,ESC,ESCESC
100 FORMAT ('+'Al' [22H'A' [J'A' [7M'$)

DO I1, LEN(STR), 1

TYPE 110, STR(I:I)
END DO

TYPE 110,ESC, [ , 'M'

110 FORMAT ( '+'Al$)

IF(%LOC(NUM) .EQ.0)GOTO 200

IF(NUM.LE.0)GOTO 200
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I DO 120 I-1,NUM,1
120 TYPE 110, ' '

CALL POS (22, LEN (STR))

200 RETURN
END

3 SUBROUTINE ERRMSG(STR)

c CALL: CALL ERRMSG(STR)

C STR ASCIZ STRING MESSAGE
C THIS ROUTINE WILL OUTPUT AN ERROR MESSAGE ON LINE 23 AND WAIT 3
C SECONDS BEFORE ERASING THE ERROR MESSAGE AND RETURNING. THE MESSAGE

C WILL BE OUTPUT IN INVERSE SCREEN FORM.
C

CHARACTER* (*) STR
BYTE ESC
DATA ESC/27/

TYPE 100,ESC,ESC,ESC

100 FORMAT('+'Al' [23H'A' [J'A' [7M'S)
DO I=1,LEN(STR), 1

TYPE 110,STR(I:I)
END DO

TYPE 110, ESC, [ 'M'
10 FORMAT (' +'A1$)

CALL WAIT

RETURN

END

C SUBROUTINE HEADER (STR)

C CALL: CALL HEADER(STR)
C STR ASCIZ MESSAGE STRING
C THIS ROUTINE WILL CLEAR THE SCREEN AND OUTPUT A TITLE IN DOUBLE

C SIZE LETTERS ON THE FIRST TWO LINES OF THE SCREEN. THE CURSOR WILL
C BE LEFT ON THE 3RD ROW COLUMN 1.

C
CHARACTER* (*) STR
BYTE ESC
DATA ESC/27/

TYPE 100, ESC, ESC, ESC
100 FORMAT('+

'
A 1' [H'A' [J'A'#3'$)

DO I=1, LEN(STR), 1

TYPE 105,STR(I:I)

105 FORMAT (' +'A1$)
END DO
TYPE *

TYPE 110,ESC
110 FORMAT ( '+'Al 14 '$)

DO I=l,LEN(STR),1

TYPE 105,STR(I:I)
END DO

3 TYPE

I
I



224

RETURN

INTEGER FUNCTION4 INPUT (BUF, MAXCNT)

C
C CALL NCHAR=INPUT(BUF,MAXCNT)

C
C NCHAR NUMBER OF CHARACTERS ACTUALLY INPUT.

C IF NCHAR=O THEN NUMBER OF CHARACTERS INPUT EXCEEDS

C MAXCNT.

C BUF STORAGE AREA FOR RETURNED CHARACTERS, WILL BE PADDED

C WITH TRAILING BLANKS UP TO MAXCNT.

C MAXCNT MAXIMUM NUMBER OF CHARACTERS TO ACCEPT.

C
CHARACTER* (*) BUF

CHARACTER*512 INPUT_LINE

INTEGER MAXCNT, 1, LINES 1 ZE, STATUS, NCHAR

INPUTLINE=
' 

'

STATUS=LIB$GET_I NPUT(INPUTT_LINE, , LINE_SIZE)

IF (. NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS)

BUF=INPUTLINE (1 :MAXCNT)

NCHAR=LINESIZE

IF (BUF ( : 1) .EQ. CHAR (3)) NCHAR=-3 C

IF (BUF (1: 1). EQ.CHAR (27) ) NCHAR=-27 !<ESC>

IF (LINESIZE.GT.MAXCNT)NCHAR=O !TOO MANY CHARACTERS

INPUT=NCHAR

RETURN
END

REAL*8 FUNCTION KAPPA

IMPLICIT REAL*16 (A-Z)

REAL*8 MU8, NU8, OMiEA8, SIGMA8, GAmmA8, RH OB, Ro8

COMMON /MAIN/ MU8,NU8,OMEGA8, SIGMA8,GAMA8, RHOS, Ro8

R=QEXT (RO8) !CM !BUBBLE RADIUS

U-QEXT(MU8) !G/CM S !VISCOSITY OF WATER

RHO-QEXT (RHO8) !G/Cm^ 3 !DENSITY OF WATER

UMEGA=QEXT(OMEGAS) !HERTZ !ANGULAR DRIVING FREQ

C CONSTANTS

RHO_G-0.001204Q0 !G/CM^3 !DENSITY OF AIR

C-I.505 !CM/S !SOUND SPEED IN WATER

RG-8.314Q7 !DYN/MOL K !GAS CONSTANT

M-28.96400 !G/MOL !MOLECULAR WEIGHT AIR

ML-18. 02Q0 !G/MOL !MOLECULAR WEIGHT WATER

TINF-29300 !K !AMBIL ,T TEMPERATURE

CV G-20.8Q7 !DYN/MOL K !SPECIFIC HEAT AIR (V)
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CPG-'2.92.Q8 !DYN/MOL K !SPECIFIC HEAT AIR (P)
CVL-76. OQ7 !DYN/MOL K !SPECIFIC HEAT WATER (V)

Ci'_t=CvI. !DYN/MOL K !SPF.CIFTC HEAT WATER (P)

GAiACPG/CVG !UNITLESS
KL5. 920 DYN /(S CM K) !THERMAL CONDUCTIVITY

KG2.50 DY /C(S CM K) "AIR

K=KLIKG !UNITLESS

CG=SQRTC( (GAmKA*RG/M) *TINF) !cM/S !SOUND SPEED IN AIR
DG=K_-G/I(RHO_-G*CPG) *M !CM-2/S !THERM. DIFFUS. AIR

DyL=KL/ (RHO*CPL) *ML !cm^2/s !THERM, DIFFUS. WATER

X=R*sQRT (2 *CMEGA/DG)

Al=$INH CX) -SIN CX)
A2-siNH CX) +SINWX
A3-cOsH MX -cos WX

DTH-3* GAMA1) * (CX*A2-2 *A3)/CX*X*A3+ * GN l) *X*A1)
KAPPA=DBLE (GAMMA/ (i+DTH*DTH) / (1~-3* (GAMMA-1) /X*Al/A3))

RETURN
END

LOGICAL F'UNCTION STEADY-STATE (X, Y, NUMPOINTSCYCLE)

IMPLICIT REAL*8 (A-Z)

DIMENSI N Y (1)
INTEGER NUMPOINTSCYCLE,MUM'

COMMON /MAIN/ MU, MU, OMEGA, SIGMA, GAMMA, RHO, RO

DATA NUM/Ol,RTOL/1.D-6/,VTOL/O.1iDO/

STEADYSTATE=. FALSE.

IFCNUM.EQ.NUM_-POINTSCYCLE*2) THEN
STEADYSTATEAS(RSECT -RSECT_2) .LE.RTOL.AND.

2 ABS(VSECTi-V_SECT2).LE.V-TOL

NUM=NUH_-POINTS-CYCLE
RSECT_1=RSECT_2
VSECT_1=VSECT_2

ENDI F

NUM=NM?+3
IF(NUM.EQ.NUM POINTSCYCLE)THEN
RSECT_1-Y(1)

VSECT_1=YC2)

WRITE(10, *) REAL (Ro*RSECT_-1),REAL CRo*VSECT1)
ELSE rF(Num.EQ.2*NUMPOINTSCYCLE) THEN

RSECT_-2-YC1)
V_SEcT_-2=Y(2)
WRITE (10, *) REAL (Ro*RSECT_2) ,REAL (RO*vSECT2)

ENDIF

RETURN
END
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PROGRAM MIENOS(INPUT,OUTPUT,S1,S2,TAPE5=INPUT,TAPE6
=OUTPUT,

$ TAPEI0=SI,TAPEII=S2)
PARAMETER ( MAXANG = 2000, MOMDIM = 1

LOGICAL SELECT( 8 ), ANYANG, PERFCT, PRNT( 2

INTEGER IPOLZN, NUMMOM
REAL MIMCUT, PMOM( 0:MOMDIM, 4 ), XMU( MAXANG

COMPLEX CREFIN, SFORWo SBACK, Sl( MAXANG ), S2( MAXANG ),

$ TFORW( 2 ), TBACK( 2 )CIC - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

C
DATA SELECT / 8*.TRUE. I, PRNT / .TRUE.,.FALSE. /

C
C

PRINT *,'MIE SCATTERING'
100 PRINT *

PRINT *,'I. I VS ANGLE'
PRINT *,'2. I VS RADIUS'

PRINT *,'3. EXIT'

PRINT *,'ENTER OPTION'

READ *,IOPT
IF (IOPT.EQ.3) STOP
IF(IOPT.EQ.1) THEN

PRINT *,'ENTER RADIUS IN MICRONS (REAL)'

READ *,RADIUS
RADIUS=RADIUS*1.E-6

PRINT *,'ENTER NUMBER OF ANGLES (INTEGER, NUMANG)l

ACCEPT *,NUMANG
ELSE IF(IOPT.EQ.2)THEN

PRINT *,'ENTER ANGLE (REAL, DEGREES)'
READ *,ANGLE
NUMANG'1

ELSE
PRINT *,'ENTER 1,2 OR 3'

GOTO 100
ENDIF

C
PI - 2. * ASIN(1.0)

PERFCT .FALSE.
MIMCUT l.E-6

NUMMOM 1
IPOLZN - 4

ANYANG .TRUE.

WAVELN=488.OE-9

CREFIN=(0.75187,0.0)

C

IF ( NUMANG.GT.MAXANG ) STOP'NUMANG IS TOO LARGE'

C
IF(NUMANG.NE. 1)THEN
DO 1 I = 1, NUMANG

XMU( I - COS( (1-1) *PI NUMANG-1
CONTINUE
XX=2.0*PI*I.33*RADIUS/WAVELN
PRNT(1)=.TRUE.

CALL MIEVO ( XX, CREFIN, PERFCT, MIMCUT, SELECT, ANYANG,

$ NUMANG, XMU, NUMMOM, IPOLZN, MOMDIM, PRNT,

$ QEXT, QSCA, GQSC, PMOM, SFORW, SBACK, Sl,

$ S2, TFORW, TBACK )
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ELSE
XMU!)=COS(ANGLE*(2.0*PI/360.))
PRNT(1)=.FALSE.
DO 20 I = 1, 1000, 1

RADIUS=I*1.E-7
XX=2.0*PI*1.33*RADItJS/WAVELN
CALL MIEVO ( XX, CREFIN, PERFCT, MIMCUT, SELECT, ANYANG,

$ NUMANG, XMU, NUMMOM, IPOLZN, MOMDIM, PRNT,
$ QEXT, QSCA, GQSC, PMOM, SFORW, SBACK, Si,

$ S2, TFORW, TBACK )

WRITE(10,19)RADIUS,REAL(SI(i))**2+AIMAG(SI(I))**2
WRITE(Ii, 19) RADIUS,REAL(S2 (1)) **2+AIMAG(S2 ())**2

19 FORMAT(2G16.8)
20 CONTINUE

ENDIF
C

TYPE 888,CHAR(7)

888 FORMAT(' 'Al)
STOP
END
SUBROUTINE MIEVO C XX, CREFIN, PERFCT, MIMCUT, SELECT, ANYANG,

S NUMANG, XMU, NMOM, IPOLZN, MOMDIM, PRNT,
$ QEXT, QSCA, GQSC, PMOM, SFORW, SBACK, Si,

$ S2, TFORW, TBACK
C

C COMPUTES MIE SCATTERING AND EXTINCTION EFFICIENCIES; ASYMMETRY
C FACTOR; FORWARD- AND BACKSCATTER AMPLITUDE; SCATTERING
C AMPLITUDES FOR INCIDENT POLARIZATION BOTH PARALLEL AND PERPENDICULAR
C TO THE PLANE OF SCATTERING, AS FUNCTIONS OF SCATTERING ANGLE;

C COEFFICIENTS IN THE LEGENDRE POLYNOMIAL EXPANSIONS OF EITHER THE
C UNPOLARIZED PHASE FUNCTION OR THE POLARIZED PHASE MATRIX;
C AND SOME QUANTITIES NEEDED IN POLARIZED RADIATIVE TRANSFER.
C
C CALLS : CONFRA, SMALL1, SMALL2, TESTMI, MIPRNT,
C LPCOEF, ERRMSG, WRTBAD
C
C INTERNAL VARIABLES
C
C

C AN, BN MIE COEFFICIENTS LITTLE-A-SUB-N, LITTLE-B-SUB-N

C ( REF. 1, EQ. 16 )
C ANMI,BNMI MIE COEFFICIENTS LITTLE-A-SUB-(N-1),
C LITTLE-B-SUB-(N-1); USED IN -GQSC- SUM

C ANP COEFFS. IN S+ EXPANSION C REF. 2, P. 1507
C BNP COEFFS. IN S- EXPANSION ( REF. 2, P. 1507

C ANPM COEFFS. IN S+ EXPANSION C REF. 2, P. 1507
C WHEN MU IS REPLACED BY - MU

C BNPM COEFFS. IN S- EXPANSION C REF. 2, P. 1507
C WHEN MU IS REPLACED BY - MU
C CBIGA(N) BESSEL FUNCTION RATIO CAPITAL-A-SUB-N (REF. 2, EQ. 2)

C ( COMPLEX VERSION )
C CIOR COMPLEX INDEX OF REFRACTION WITH NEGATIVE
C IMAGINARY PART (VAN DE HULST CONVENTION)
C CIORIV 1 / CIOR
C COEFF ( 2N + 1)/ N ( N + 1))
C CONFRA VALUE OF LENTZ CONTINUED FRACTION FOR -CBIGA(NTRM)-,
C USED TO INITIALIZE DOWNWARD RECURRENCE.
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C CTMP (COMPLEX) TEMPORARY VARIABLE
C F1,F2,F3 ARITHMETIC STATEMENT FUNCTIONS USED IN DETERMINING

C WHETHER TO USE UP- OR DOWN-RECURRENCE FOR 'BIGA'

C ( REF. 2, EQS. 6-8 )
C FN FLOATING POINT VERSION OF INDEX IN LOOP PERFORMING

C MIE SERIES SUMMATION

C LITA, LITB(N) MIE COEFFICIENTS -AN-, -BN-, SAVED IN ARRAYS FOR

C USE IN CALCULATING LEGENDRE MOMENTS *PMOM*

C MAXTRM MAX. POSSIBLE NO. OF TERMS IN MIE SERIES

C MM + 1 AND - 1, ALTERNATELY.

C MIM MAGNITUDE OF IMAGINARY REFRACTIVE INDEX

C MRE REAL PART OF REFRACTIVE INDEX

C MAXANG MAX. POSSIBLE VALUE OF INPUT VARIABLE -NUMANG-

C NANGD2 (NUMANG+1)/2 ( NO. OF ANGLES IN 0-90 DEG; ANYANG=F

C NOABS TRUE, NO ABSORPTION. CAN OCCUR EITHER BECAUSE

C PERFCT=TRUE OR BECAUSE IMAG. REFRAC. INDEX=O.

C NPIDN (N + 1 ) / N

C NTRM NO. OF TERMS IN MIE SERIES

C PASSI TRUE ON FIRST ENTRY, FALSE THEREAFTER

C PIN(J) ANGULAR FUNCTION LITTLE-PI-SUB-N ( REF. 2, EQ. 3

C AT J-TH ANGLE

C PINMI(J) LITTLE-PI-SUB-(N-1) ( SEE -PIN- ) AT J-TH ANGLE

C PSINMI RICATTI-BESSEL FUNCTION PSI-SUB-(N-1) OF ARGUMENT -XX-

C PSIN RICATTI-BESSEL FUNCTION PSI-SUB-N OF ARGUMENT -XX-

C ( REF. 1, P. 11 FF. )

C RBIGA(N) BESSEL FUNCTION RATIO CAPITAL-A-SUB-N (REF. 2, EQ. 2)

C ( REAL VERSION, FOR WHEN IMAG REFRAC INDEX = 0

C REZINV 1/ ( MRE * XX)

C RIORIV 1I MRE

C RN 1/ N

C RTMP (REAL) TEMPORARY VARIABLE

C SAVINP INTERNAL FILE USED FOR STORING USER INPUT VARIABLES

C ON FIRST ENTRY

C SP(J) S+ FOR J-TH ANGLE ( REF. 2, P. 1507

C SM(J) S- FOR J-TH ANGLE REF. 2, P. 1507

C SPS(J) S+ FOR (NUMANG+l-J)-TH ANGLE ( ANYANG=FALSE

C SMS(J) S- FOR (NUMANG+1-J)-TH ANGLE ( ANYANG=FALSE

C TAUN ANGULAR FUNCTION LITTLE-TAU-SUB-N ( REF. 2, EQ. 4

C AT J-TH ANGLE
C TCOEF N ( N+I ) ( 2N+I ) (FOR SUMMING TFORW,TBACK SERIES)
C TWONPI 2N + 1
C YESANG TRUE IF NUMANG .GT. 0
C ZETNM1 RICATTI-BESSEL FUNCTION ZETA-SUB-(N-1) OF ARGUMENT
C -XX- ( REF. 2, EQ. 17 )

C ZETN RICATTI-BESSEL FUNCTION ZETA-SUB-N OF ARGUMENT -XX-

C ZINV 1 / ( CIOR * XX

C

C- ----------------------------------------------------------------------

C -------- I / 0 SPECIFICATIONS FOR SUBROUTINES MIEVO, MIEVI

C ----------------------------------------------------------------------
LOGICAL ANYANG, PERFCT, PRNT( * ), SELECT( *

INTEGER IPOLZN, MOMDIM, NUMANG, NMOM
REAL GQSC, MIMCUT, PMOM( :MOMDIM, ), QEXT, QSCA,

$ XMU( * ), XX
COMPLEX CREFIN, SFORW, SBACK, S1( ), S2( ), TFORW( *

$ TBACK( * )

C ----------------------------------------------------------------------



PARAMETER CMAXANG = 1501, MXANG2 =MAXANG/2 + 1
C NOTE -- MAXTRM =10100 IS NECES-
C SARY TO DO SOME OF THE TEST PROBS;

PARAMETER (MAXTRM = 3000)U PARAMETER CONETHR = l./3.

CHARACTER*120 SAVINP
LOGICAL DOWN, INPERR, NOABS, OK, PASS1, YESANG
REAL MIM, MRE, MM, NP1DNIREAL RBIGA( MAXTRM ), PIN( MAXANG ), PINM1C MAXANG
COMPLEX CONFRA
COMPLEX AN, BN. ANMi, BNM1, ANP, BNP, ANPM, BNPM,

$ CIOR, CIORIV, CTMP, ZET, ZETNM1, ZETN, ZINVICOMPLEX CBIGA( MAXTRM ), LITA( MAXTRM ), LITB( MAXTRM )
$ SP( M4AXANG ), SM( MAXANG ), SPS( MXANG2 ), SMS( MXANG2
EQUIVALENCE ( CBIGA, RBIGA3 SAVE PASS1

SQ( CTMP )=REAL( CTMP )**2 +AIMAG( CTMP )**2

Fl( MRE )=- 8.0 + MRE**2 C26.22 + MRE *(- 0.4474
$ + MRE**3 * C0.00204 - 0.000175 *MRE)

F2( MRE) 3.9 +MRE * -10.8 +13.78 *MRE )
F3( MRE )=- 15.04 + MRE *C8.42 + 16.35 * MRE

C
DATA PASSi / .TRUE./IC

C **TEST FOR BAD INPUT
CIIt ( NUMANG.GT.MAXANG )THEN

CALL ERRMSG( 'MIEVO--PARAMETER MAXANG TOO SMALL', .TRUE.

INPERR = .TRUE.

END IF
IF (NUMANG.LT.0 ) CALL WRTBADC 'NUMANG', INPERR
IF (XX.LT.0. .OR. XX.GT.1.E+5 ) CALL WRTBAD( 'XX', INPERR

IF C NOT.PERFCT .AN). REAL(CREFIN).LE.0.
$ CALL WRTBAD( 'CREFIN', INPERR)
IF CMOMDIM.LT.1 ) CALL WRTBAD( 'MCMDIM', INPERR
IF (SELECT(7 ) THEN

IF ( NMOM.LT.0 .OR. NMOM.GT.MOMDIM ) CALL WRTBAD(CNMOM',INPERR)

IF ( ABS(IPOLZN) .GT.4 ) CALL WRTBAD( 'IPOLZN', INPERR

C END IF

IF ( NUMANG .GT. 0 ) THEN
IF ( ANYANG )THEN

DO 1 1 1, NUMANG
IF ( XMU(I) .LT.-1.00001 .OR. XMU(I) .GT.1.00001

$ CALL WRTBAD( 'XMU', INPERR
1 CONTINUEI ELSDO 2 1 = 1, ( NUMANG + 1 )/2

IF ( XMU(I) .LT.-0.00001 .OR. XMU(I) .GT.1.00001

$ CALL WRTBAD( 'XMU', INPERR
2 CONTINUE
END IF

END IF3 C
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IF C INPERR
$ CALL ERRMSG( 'MIEVO--INPUT ERROR(S). ABORTING...', .TRUE.

C
C

IF ( PASS1 ) THEN
C " SAVE USER INPUT VALUES
C

WRITE ( SAVINP, 2001, ERR=990 ) XX, CREFIN, MIMCUT, PERFCT,

$ SELECT(7), ANYANG, NMOM, IPOLZN, NUMANG, XMU(1)
C
C ** RESET INPUT VALUES FOR TEST CASE

XX = 10.0
CREFIN = ( 1.5, - 0.1

PERFCT = .FALSE.
MIMCUT = 0.0

SELECT( 7 ) = .TRUE.
ANYANG = .TRUE.
NUMANG = I

XMU( 1 ) = - 0.7660444

NMOM = 1

IPOLZN = - 1
C

END IF
C
C

10 IF ( PERFCT ) THEN
C

NOABS = .TRUE.
C

IF ( XX .LE. 0.1 ) THEN
C ** USE TOTALLY-REFLECTING

C ** SMALL-PARTICLE LIMIT

C
CALL SMALL1 C XX, NUMANG, XMU, QEXT, QSCA, GQSC, SFORW,

$ SBACK, S1, S2, TFORW, TBACK, LITA, LITB
NTRM = 2

GO TO 200
C

END IF
C

ELSE
C

CIOR = CREFIN

IF C AIMAG( CIOR ) .GT. 0.0 ) CIOR = CONJG( CIOR
MRE REAL( CIOR
MIM = - AIMAG( CIOR

NOABS = MIM .LE. MIMCUT
CIORIV = 1.0 / CIOR
RIORIV = 1.0 / MRE

C
IF ( XX * AMAXI( 1.0, CABS(CIOR) ) .LE. 0.1 ) THEN

C
C USE GENERAL-REFRACTIVE-INDEX
C * SMALL-PARTICLE LIMIT
C * REF. 2, P. 1508
C

CALL SMALL2 ( XX, CIOR, .NOT.NOABS, NUMANG, XMU, QEXT,
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$ QSCA, GQSC, SFORW, SBACK, Sl, S2, TFORW,

$ TBACK, LITA, LITB
NTRM = 2

GO TO 200
C

END IF
C

END IF
C

NANGD2 = ( NUMANG + 1 ) / 2
YESANG = NUMANG .GT. 0

C ** ESTIMATE NUMBER OF TERMS IN MIE SERIES
C ( C REF. 2, P. 1508

IF ( XX.LE.8.0 ) THEN

NTRM = XX + 4. * XX**ONETHR + 1.
ELSE IF ( XX.LT.4200. ) THEN

NTRM = XX + 4.05 * XX**ONETHR + 2.

ELSE
NTRM = XX + 4. * XX**ONETHR + 2.

END IF
IF C NTRM+I .GT. MAXTRM

$ CALL ERRMSG( 'MIEVO--PARAMETER MAXTRM TOO SMALL', .TRUE.
C
C

IF C PERFCT ) GO TO 55
C
C ------------ BEGIN COMPUTATION OF 'BIGA'
C

C * DECIDE WHETHER 'BIGA' CAN BE
C ** CALCULATED BY UP-RECURRENCE

IF ( MRE.LT.1.0 ) THEN
DOWN = .TRUE.

ELSE IF C YESANG ) THEN
DOWN = .TRUE.
IF ( MIM*XX .LT. F2( MRE ) ) DOWN = .FALSE.

ELSE
DOWN = .TRUE.
IF C MIM*XX .LT. FI( MRE ) ) DOWN = .FALSE.

END IF
C

ZINV = 1.0 / C CIOR * XX 1
REZINV 1.0 / ( MRE * XX
IF ( DOWN ) THEN

C ** COMPUTE INITIAL HIGH-ORDER 'BIGA' USING
C ** LENTZ METHOD ( REF. 1, PP. 17-2C
C

CTMP = CONFRA( NTRM, ZINV, XX
C
C * DOWNWARD RECURRENCE FOR 'BIGA'

C *** C REF. 1, EQ. 22

IF ( NOABS ) THEN
C ' NO-ABSORPTION CASE

RBIGA( NTRM ) = REAL( CTMP
DO 25 N = NTRM, 2, - 1

RBIGA( N-iI = (N*REZINV)

$ - 1.0 / (N*REZINV) + RBIGA( N )
25 CONTINUE
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ELSE

C ** ABSORPTIVE CASE
CBIGA( NTRM ) = CTMP
DO 30 N - NTRM, 2, - 1

CBIGA( N-I ) = (N*ZINV) - 1.0 / ( (N*ZINV) + CBIGA( N
30 CONTINUE

C
END IF

C
ELSE

C UPWARD RECURRENCE FOR 'BIGA'
C C REF. 1, EQS. 20-21

IF ( NOABS ) THEN
C ** NO-ABSORPTION CASE

RTMP = SIN( MRE*XX )
RBIGA( 1 ) = - REZINV

$ + RTMP / ( RTMP*REZINV - COS( MRE*XX )

DO 40 N 2, NTRM
RBIGA( N ) = - ( N*REZINV

$ + 1.0/ ( ( N*REZINV) -RBIGA( N-I))
40 CONTINUE

C
ELSE

C * ABSORPTIVE CASE
C

CTMP = CEXP( - (0.,2.) * CIOR * XX
CBIGA( 1 I = - ZINV + (I.-CTMP) /

$ ( ZINV * (1.-CTMP) - (0.,I.)*(1.+CTMP)

DO 50 N 2, NTRM
CBIGA( N ) = - (NtZINV) + 1.0 / ((N*ZINV) - CBIGA( N-i ))

50 CONTINUE
END IF

END IF
C
C ------------ END OF 'BIGA' COMPUTATION
C
C
C ** INITIALIZE RICATTI-BESSEL FUNCTIONS
C ** (PSI,CHI,ZETA)-SUB-(O,I) FOR UPWARD
C ** RECURRENCE ( REF. 1, EQ. 19

55 XINV = 1.0 / XX

PSINMI = SIN( XX

CHINMI = COS( XX
PSIN = PSINMi * XINV - CHINMI

CHIN = CHINMI * XINV + PSINMI

ZETNM1 = CMPLX( PSINMi, CHINMI
ZETN = CMPLX( PSIN, CHIN )

C ** INITIALIZE PREVIOUS COEFFI-

C ** CIENTS FOR -GQSC- SERIES
ANMI ( 0.0, 0.0
BNM1 = C 0.0, 0.0

C ** INITIALIZE ANGULAR FUNCTION LITTLE-PI
C * AND SUMS FOR S+, S- ( REF. 2, P. 1507

IF ( ANYANG ) THEN
DO 60 J = 1, NUMANG

PINMi( J I = 0.0
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PIN( J ) =1.0
SP ( j ) = ( 0.0, 0.0
SM ( J ) = ( 0.0, 0.0

60 CONTINUE
ELSE

DO 70 J - 1, NANGD2
PINMI( J ) = 0.0

PIN( J ) = 1.0

SP C J ) = C 0.0, 0.0
SM C J ) = C 0.0, 0.0
SPS( J ) = C 0.0, 0.0
SMS( J ) = C 0.0, 0.0

70 CONTINUE

END IF
C ** INITIALIZE MIE SUMS FOR EFFICIENCIES, ETC.

QSCA = 0.0

GQSC = 0.0

SFORW = ( 0., 0.
SBACK = C 0., 0.

TFORW( 1 ) = 0., 0.

TBACKC 1 )=C0., 0.

C
C

C --------- LOOP TO SUM MIE SERIES
CI MM + 1.0

DO 100 N = 1, NTRM

c•* COMPUTE VARIOUS NUMERICAL COEFFICIENTS

FN = N
RN = 1.0 / FN
NPlDN = 1.0 + RN

TWONPI = N + ( N + I

COEFF = TWONPI / ( FN * ( N + 1 ) I

TCOEF = TWONPI * C FN * C N + 1 )
C

C ** CALCULATE MIE SERIES COEFFICIENTS
IF ( PERFCT ) THEN

C ** TOTALLY-REFLECTING CASE

AN = C ( FN*XINV ) PSIN - PSINM1I /

$ C C FN*XINV ) * ZETN - ZETNM1

BN = PSIN / ZETN

ELSE IF ( NOABS ) THEN3 C ** NO-ABSORPTION CASE

AN - ( (RIORIV*RBIGA(N) + ( FN*XINV ) I * PSIN - PSINMI

$ / ( CRIORIV*RBIGA(N) + C FN*XINV ) ) * ZETN - ZETNM1
BN = ( C MRE * RBIGA(N) + ( FN*XINV I I * PSIN - PSINMI

ELSE$ ELCSE MRE * RBIGA(N) + CFN*XINV I *ZETN -ZETNM1

C ** ABSORPTIVE CASE

C
AN = C CIORIV * CBIGA(N) + CFN*XINV I PSIN - PSINMi

$/ C CIORIV * CBIGA(N) + C FN*XINV ) ) ZETN - ZETNM1

BN - C ( CIOR * CBIGA(N) + ( FN*XINV ) ) * PSIN - PSINMI 1
$ /( C CIOR * CBIGA(N) + ( FN*XINV ) ) * ZETN - ZETNM1I

I
I
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QSCA QSCA + TWONP1 * { SQ( AN) + SQ( BN
C

END IF
C ** SAVE MIE COEFFICIENTS FOR *PMOM* CALCULN.

LITA( N ) = AN
LITB( N ) - BN

c ** INCREMENT MIE SUMS FOR NON-ANGLE-

C ** DEPENDENT QUANTITIES

C
SFORW = SFORW + TWONPI * ( AN + BN

TFORW( I ) - TFORW( 1 ) + TCOEF. * AN - BN

SBACK - SBACK + (MM * TWONP1) * (AN - BN)

TBACK( 1 ) = TBACK( 1 ) + ( MM * TCOEF ) * ( AN + BN

GQSC = GQSC + C FN - RN ) * REAL( ANMI * CONJG( AN

$ + BNM1 * CONJG( BN

$ + COEFF * REAL( AN * CONJG( BN

C
IF ( YESANG ) THEN

C ** PUT MIE COEFFICIENTS IN FORM

C ** NEEDED FOR COMPUTING S+, S-

C ( C REF. 2, P. 1507

ANP = COEFF * C AN + BN

BNP = COEFF * ( AN - BN

C ** INCREMENT MIE SUMS FOR S+, S-

C ** WHILE UPWARD RECURSING

C ** ANGULAR FUNCTIONS LITTLE PI

C * AND LITTLE TAU

IF ( ANYANG ) THEN

C * ARBITRARY ANGLES

C
C * VECTORIZABLE LOOP

DO 80 J = 1, NUMANG
RTMP = C XMU( J ) * PIN( J 1 1 - PINM1( J I
TAUN - FN * RTMP - PINMI( J )

SP( J) = SP( J) + ANP * PIN( J) + TAUN

SM( J I = SM( J )+ BNP * PIN( 3 ) - TAUN

PINMI( 3 ) = PIN( J )

PIN( 3) = ( XMU( ) * PIN( J) ) + NPIDN * RTMP

80 CONTINUE

C
ELSE

C ** ANGLES SYMMETRIC ABOUT 90 DEGREES

ANPM - MM * ANP

BNPM - MM * BNP

C *• VECTORIZABLE LOOP

DO 90 J = 1, NANGD2
RTMP = C XMU( J ) * PIN( 3 ) J - PINMIC J

TAUN = FN * RTMP - PINMI( J )

SP ( J ) = SP ( 3 ) + ANP * ( PIN( J + TAUN

SMS( J - SMS( J ) + BNPM * ( PIN( J + TAUN

SM ( J - SM ( J) + BNP * ( PIN( J - TAUN
SPS( J ) = SPS( J ) + ANPM * C PIN( J - TAUN

PINMIC J ) = PIN( J

PIN( 3 ) = C XMU( J ) * PIN( J 1 1 + NPlDN * RTMP

90 CONTINUE
C

END IF
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END IF
C * UPDATE RELEVANT QUANTITIES FOR NEXT

C ** PASS THROUGH LOOP

MM - - MM
ANMI - AN
BNM1 - BN

C UPWARD RECURRENCE FOR RICATTI-BESSEL

C ** FUNCTIONS ( REF. 1, EQ. 17

C
ZET = ( TWONPI * XINV ) * ZETN - ZETNM1

ZETNMI = ZETN

ZETN = ZET

PSINMI = PSIN

PSIN = REAL( ZETN

100 CONTINUE
C
C ---------- END LOOP TO SUM MIE SERIES---------------------------------
C
C

QEXT = 2. / XX**2 * REAL( SFORW

IF ( PERFCT .OR. NOABS ) THEN
QSCA - QEXT

ELSE
QSCA 2. / XXI*2 * QSCA

END IF
C

GQSC = 4. / XX**2 * GQSC

SFORW = 0.5 * SFORW

SBACK = 0.5 * SBACK

TFORW( 2 ) = 0.5 * ( SFORW + 0.25 * TFORW( 1
TFORW( 1 ) = 0.5 * C SFORW - 0.25 * TFORW( 1

TBACK( 2 ) = 0.5 * C SBACK + 0.25 * TBACK( I

TBACK( 1 ) = 0.5 * C - SBACK + 0.25 * TBACK( 1

C
IF ( YESANG ) THEN

C ** RECOVER SCATTERING AMPLITUDES

C ** FROM S+, S- ( REF. 1, EQ. 11
IF ( ANYANG ) THEN

C ** VECTORIZABLE LOOP

DO 110 J = 1, NUMANG
SI( J ) = 0.5 * ( SP( J + SM( J

S2( J ) = 0.5 * C SP( J - SM( J

110 CONTINUE
C

ELSE
C ** VECTORIZABLE LOOP

DO 120 J = 1, NANGD2
S( J) = 0.5 * (SP( J + SM( J)
S2( J ) = 0.5 * ( SP( J - SM( J

120 CONTINUE

C VECTORIZABLE LOOP
DO 130 J = 1, NANGD2

SI( NUMANG+-J) = 5* ( SPS( J) + SMS( J)
S2( NUMANG+1 - J ) = 0.5 * ( SPS( J ) - SMS( J

130 CONTINUE
END IF

C
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END IF
C ** CALCULATE LEGENDRE MOMENTS

200 IF ( SELECT(7)
$ CALL LPCOEF ( NTRM, NMOM, IPOLZN, MOMDIM, LITA, LITB, PMOM

C
C

IF ( PASS1 ) THEN
C " COMPARE TEST CASE RESULTS WITH

C * CORRECT ANSWERS AND ABORT IF BAD
C

CALL TESTMI ( QEXT, QSCA, GQSC, SFORW, SBACK, S1, S2,

$ TFORW, TBACK, PMOM, MOMDIM, OK
IF ( .NOT. OK ) THEN

PRNT(1) = .TRUE.
PRNT(2) - .TRUE.
CALL MIPRNT( PRNT, XX, PERFCT, CREFIN, NUMANG, XMU, QEXT,

$ QSCA, GQSC, SELECT7), NMOM, IPOLZN, MOMDIM,

$ PMOM, SFORW, SBACK, TFORW, TBACK, S1, S2
CALL ERRMSG( 'MIEVO -- SELF-TEST FAILED', .TRUE.

END IF
C ** RESTORE USER INPUT VALUES
C

READ ( SAVINP, 2001, ERR=990 ) XX, CREFIN, MIMCUT, PERFCT,
$ SELECT(7), ANYANG, NMOM, IPOLZN, NUMANG, XMU(1)

PASS - .FALSE.
GO TO 10

END IF
C

IF ( PRNT(1) ,OR. PRNT(2)
$ CALL MIPRNT( PRNT, XX, PERFCT, CREFIN, NUMANG, XMU, QEXT,
$ QSCA, GQSC, SELECT), NMOM, IPOLZN, MOMDIM,
$ PMOM, SFORW, SBACK, TFORW, TBACK, S1, S2

C
RETURN

C

990 CALL ERRMSG( 'MIEV0--I/O ERROR IN SELF-TEST', .TRUE.

C
2001 FCRMAT( 1P, 4E16.8, 3L2, 315, E16.8

END

SUBROUTINE LPCOEF ( NTRM, NMOM, IPOLZN, MOMDIM, A, B, PMOM

C
C CALCULATE LEGENDRE POLYNOMIAL EXPANSION COEFFICIENTS (ALSO

C CALLED MOMENTS) FOR PHASE QUANTITIES ( REF. 5 FORMULATION

c
C * NOTE *** EQS. 2-5 ARE IN ERROR IN DAVE, APPL. OPT. 9,

C 1888 (1970). EQ. 2 REFERS TO Ml, NOT M2; EQ. 3 REFERS TO

C M2, NOT Ml. IN EQS. 4 AND 5, THE SUBSCRIPTS ON THE SECOND

C TERM IN SQUARE BRACKETS SHOULD BE INTERCHANGED,

C

C * NOTE *** THIS SUBROUTINE WORKS CORRECTLY IN THE SPECIAL

C CASE NTRM - 2 (NO. TERMS IN MIE SERIES = 2) BUT CALLS
C SUBROUTINE *LPCO2T* TO DO THAT CASE BOTH FOR SPEED AND
C BECAUSE NTRM - 2, BEING THE SMALL-PARTICLE LIMIT, MAY BE

C CALLED FREQUENTLY.
C
C *** NOTE *** SOME IMPROVEMENT IN SPEED IS OBTAINABLE IF
C MOMENTS FOR ALL FOUR PHASE QUANTITIES ARE DESIRED (NELEM=4),



237

C BECAUSE THE SERIES BEING SUMMED FOR THE THIRD PHASE QUANTITY
C IS THE REAL PART OF A COMPLEX SERIES, AND THE FOURTH PHASE
C QUANTITY IS THE IMAGINARY PART OF THAT SERIES. HOWEVER, THIS
C WOULD INVOLVE SUMMING THAT COMPLEX SERIES. THE EXTRA ARITH-
C METIC FOR SO DOING WILL BE WASTED IN MOST CASES, SINCE MOST
C USERS ARE NOT INTERESTED IN THE FOURTH PHASE QUANTITY, WHICH
C IS RELATED TO CIRCULAR POLARIZATION.
C

INTEGER IPOLZN, MOMDIM, NMOM, NTRM
REAL PMOM( O:MOMDIM, *

COMPLEX A( * ), B( *

C
C ** SPECIFICATION OF LOCAL VARIABLES
C
C AM(M) NUMERICAL COEFFICIENTS A-SUB-M-SUPER-L
C IN DAVE, EQS. 1-15, AS SIMPLIFIED IN REF. 5.
C
C BI(I) NUMERICAL COEFFICIENTS B-SUB-I-SUPER-L
C IN DAVE, EQS. 1-15, AS SIMPLIFIED IN REF. 5.
C
C BIDEL(I) 1/2 BII) TIMES FACTOR CAPITAL-DEL IN DAVE
C
C CM,DM() ARRAYS C AND D IN DAVE, EQS. 16-17 (MUELLER FORM),
C CALCULATED USING RECURRENCE DERIVED IN REF. 5
C
C CS,DS() ARRAYS C AND D IN REF. 4, EQS. A5-A6 (SEKERA FORM),
C CALCULATED USING RECURRENCE DERIVED IN REF. 5
C
C C,D() ITHER -CM,DM- OR -CS,DS-, DEPENDING ON -IPOLZN-
C
C EVENL TRUE FOR EVEN-NUMBERED MOMENTS; FALSE OTHERWISE
C
C IDEL 1 + LITTLE-DEL IN DAVE
C
C MAXTRM MAX. NO. OF TERMS IN MIE SERIES
C
C MAXMOM MAX. NO. OF NON-ZERO MOMENTS
C
C NELEM NO. OF DISTINCT PHASE MATRIX ELEMENTS
C FOR WHICH TO GET MOMENTS
C
C NUMMOM NUMBER OF NON-ZERO MOMENTS
C
C RECIP(K) 1 / K
C

PARAMETER ( MAXTRM =3002, MAXMOM = 2*MAXTRM, MXMOM2 = MAXMOM/2,

$ MAXRCP = 4*MAXTRM + 2 )
REAL AM( 0:MAXTRM ), BI( 0:MXMOM2 ), BIDEL( 0:MXMOM2 ),
$ RECIP( MAXRCP
COMPLEX CM( MAXTRM ), DM( MAXTRM ), CS( MAXTRM ), DS( MAXTRM ),

$ C( MAXTRM ), D( MAXTRM
EQUIVALENCE ( C, CM ), ( D, DM
LOGICAL PASS1, EVENL

SAVE PASS1, RECIP
DATA PASS1 / .TRUE. /

C
C
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IF ( PASSI ) THEN
C

DO 1 K - I, MAXRCP
RECIP( K ) = 1.0 / K

CONTINUE
PASSI = .FALSE.

C
END IF

C
IF ( NTRM.EQ.1 ) THEN

CALL LPCOIT C NMOM, IPOLZN, MOMDIM, A, B, PMOM

RETURN
ELSE IF ( NTRM.EQ.2 ) THEN

CALL LPCO2T ( NMOM, IPOLZN, MOMDIM, A, B, PMOM
RETURN

END IF
C

IF C NTRM+2 .GT. MAXTRM 1
$ CALL ERRMSG( 'LPCOEF--PARAMETER MAXTRM TOO SMALL', .TRUE.

C
C ** CALCULATE MUELLER C, D ARRAYS

CM( NTRM+2 ) = ( 0., 0.
DM( NTRM+2 ) = C 0., 0.

CM( NTRM+1 ) = (1. - RECIP( NTRM+I ) ) *(NTRM)
DM( NTRM+lI 1 C 1. - RECIP( NTRM+1 ) ) * A( NTRM

CM( NTRM ) = C RECIP(NTRM) + RECIP(NTRM+1) ) * A( NTRM
$ + ( 1. - RECIP(NTRM) ) * B( NTRM-I

DM( NTRM = CRECIP(NTRM) + RECIP(NTRM+1) ) * B( NTRM
$ + ( 1. - RECIP(NTRM) ) * A( NTRM-I

C
DO 10 K = NTRM-1, 2, -1

CM( K ) = CM( K+2 - i. + RECIP(K+I) ) * B( K+I
$ + RECIPCK) + RECIP(K+I) ) * A( K )
$ + 1. - RECIPCK) ) * B( K-I

DM( K I = DM( K+2 1 - . + RECIP(K+l) ) * A( K+I
$ + RECIP(K) + RECIP(K+I) ) * B( K )

$ + 1. - RECIP(K) I A( K-iI1

10 CONTINUE
CM( 1 1 = CM( 3 ) + 1.5 * C A( 1 ) - B( 2 1 1
DM( 1 ) = DM( 3 1 + 1.5 * C B( 1 ) - A( 2

C
IF ( IPOLZN.GE.0 ) THEN

C
DO 20 K = 1, NTRM + 2

C( K I C 2*K - 1 1 CM( K
D( K ) = C 2*K - 1 * DM( K )

20 CONTINUE
C

ELSE
C ** COMPUTE SEKERA C AND D ARRAYS

CS( NTRM+2 I = C 0., 0.
DS( NTRM+2 ) - C 0., 0.
CS( NTRM+1I )= C 0., 0. 1
DS( NTRM+1I )= C 0., 0. 1

C
DO 30 K = NTRM, 1, -1

CS( K = CS( K+2 ) + 2*K + 1 ) * C CM( K+1I - B( K )
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DS( K ) - DS( K+2 ) ( 2*K + 1) DM( ) - A( K

30 CONTINUE
C

DO 40 K 1 1, NTRM + 2

C( K) 2*K - 1) *CS( K)
D( K ) ( 2*K - 1 ) DS( K

40 CONTINUE
C

END IF
C

NELEM = IABS ( IPOLZN
DO 50 J = 1, MAXO( 1, NELEM

DO 50 L - 0, NMOM
PMOM( L,J ) = 0.0

50 CONTINUE
C IF( IPOLZN.LT.0 ) NUMMOM = MIN( NMOM, 2*NTRM 2

IF( IPOLZN.GE.0 ) NUMMOM = MINO( NMOM, 2*NTRM 2

IF ( NUMMOM .GT. MAXMOM )
$ CALL ERRMSG( 'LPCOEF--PARAMETER MAXTRM TOO SMALL', .TRUE.

C
C ** LOOP OVER MOMENTS

DO 500 L = 0, NUMMOM
LD2 = L /2LEVENL = MOD( L,2 ) .EQ. 0

C ** CALCULATE NUMERICAL COEFFICIENTS

C ** A-SUB-M AND B-SUB-I IN DAVE

C F DOUBLE-SUMS FOR MOMENTS

IF( L.EQ.0 ) THEN

IDEL = 1

DO 60 M= 0, NTRM
AM( M - 2.0 * RECIP( 2*M + 1

60 CONTINUE
BI( 0 ) = 1.0

ELSE IF( EVENL ) THENI C
IDEL = 1
DO 70 M = LD2, NTRM

AM( M 1 C 1. + RECIP( 2*M-L+1 ) ) * AM( M I
70 CONTINUE

DO 75 I = 0, LD2-1

BI( I ) C 1. - RECIP( L-2*I ) ) * BI I
75 CONTINUE

BI( LD2 )=(2. -RECIP(L)) * BI( LD2-1)
C

ELSE
C

IDEL=2
DO 80 M = LD2, NTRM

AM( M 1 - ( 1. - RECIP( 2*M+L+2 I ) * AM( M

80 CONTINUE
DO 85 I = 0, LD2

BI( I 1 C 1. - RECIP( L+2*I+1I ) ) BI( I

85 CONTINUE

* C

I
I
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C * ESTABLISH UPPER LIMITS FOR SUMS

C ** AND INCORPORATE FACTOR CAPITAL-

C ** DEL INTO B-SUB-I
MMAX = NTRM - IDEL
IF( IPOLZN.GE.0 ) MMAX - MMAX + 1

IMAX = MINO( LD2, MMAX - LD2
IF( IMAX.LT.0 I GO TO 600

DO 90 I - 0, IMAX
BIDEL( I = BI( I I

90 CONTINUE
IF( EVENL ) BIDEL( 0 0.5 BIDEL( 0 1

C
C * PERFORM DOUBLE SUMS JUST FOR

C ** PHASE QUANTITIES DESIRED BY USER

IF( NELEM.EQ.0 ) THEN
C

DO 110 I = 0, IMAX

C * VECTORIZABLE LOOP (CRAY)

SUM = 0.0

DO 100 M = LD2, MMAX - I
SUM = SUM + AM( M ) *

$ ( REAL( C(M-I+I) * CONJG( C(M+I+IDEL)

$ + REAL( D(M-I+I) * CONJG( D(M+I+IDEL) )

100 CONTINUE
PMOM( L,1I = PMOM( L,lI + BIDEL( I ) SUM

110 CONTINUE
PMOM( L,I ) = 0.5 * PMOM( L,1
GO TO 500

END IF

C
DO 160 I = 0, IMAX

C ** VECTORIZABLE LOOP (CRAY)
SUM = 0.0
DO 150 M - LD2, MMAX - I

SUM - SUM + AM( M ) *

$ REAL( C(M-I+I) * CONJG( C(M+I+IDEL)

150 CONTINUE
PMOM( L,1) =PMOM( L,) + BIDEL( I) *SUM

160 CONTINUE
C

IF( NELEM.GT.1I THEN
C

DO 210 I = 0, IMAX

C ** VECTORIZABLE LOOP (CRAY)

SUM = 0.0
DO 200 M = LD2, MMAX - I

SUM = SUM + AM( M )
$ REAL( D(M-I+1) * CONJG( D(M+I+IDEL)

200 CONTINUE
PMOM( L,2 ) = PMOM( L,2 I + BIDEL( I ) * SUM

210 CONTINUE
END IF

C
IF( NELEM.GT.2 I THEN

C
DO 310 1 = 0, IMAX
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C* VECTORIZABLE LOOP (CRAY)

SUM - 0.0

DO 300 M = LD2, MMAX - I
SUM = SUM + AM( M )

$ ( REAL( C(M-I+I) * CONJG( D(M+I+IDEL)

$ + REAL( C(M+I+IDEL) * CONJG( D(M-I+1)

300 CONTINUE
PMOM( L,3 ) = PMOM( L,3 ) + BIDEL( I ) * SUM

310 CONTINUE
PMOM( L,3 ) f 0.5 * PMOM( L,3

END IF
C

IF( NELEM.GT.3 ) THEN

C
DO 410 I = 0, IMAX

C " VECTORIZABLE LOOP (CRAY)
SUM - 0.0
DO 400 M = LD2, MMAX - I

SUM = SUM + AM( M ) *

$ ( AIMAG( C(M-I+I) * CONJG( D(M+I+IDEL)
$ + AIMAG( C(M+I+IDEL) * CONJG( D(M-I+I)

400 CONTINUE
PMOM( L,4 ) =PMOM( L,4 ) + BIDEL( I) *SUM

410 CONTINUE
PMOM( L.4 ) = - 0.5 * PMOM( L,4

END IF
C

500 CONTINUE
C
C

600 RETURN
END
SUBROUTINE LPCO1T ( NMOM, IPOLZN, MOMDIM, A, B, PMOM

C
C CALCULATE LEGENDRE POLYNOMIAL EXPANSION COEFFICIENTS (ALSO
C CALLED MOMENTS) FOR PHASE QUANTITIES IN SPECIAL CASE WHERE
C NO. TERMS IN MIE SERIES = 1
C

INTEGER IPOLZN, MOMDIM, NMOM

REAL PMOM( 0:MOMDIM, * )
COMPLEX A( " ), B( * ), CTMP, AlBIC

SQ( CTMP ) = REAL( CTMP )**2 + AIMAG( CTMP )**2
C
C

NELEM = IABS ( IPOLZN
DO 10 J = 1, MAXO( 1, NELEM

DO 10 L = 0, NMOM

PMOM( L,J ) 0.0

10 CONTINUE
C

AlSO = SQ( A(l)
RiS = SQ( B1)

AlBIC = AMi) * CONJG(B(1) 

C
IF( IPOLZN.LT.0 ) THEN

C
PMOM( L,1 ) = 2.25 * BISQ



IF( NELEM.GT.I ) PMOM( L,2 ) = 2.25 - AISQ
IF( NELEM.GT.2 ) PMOM( L,3 ) = 2.25 * REAL( AlBIC
IF( NELEM.GT.3 ) PMOM( L,4 ) = 2.25 *AIMAG( AlBIC

C
ELSE

C
NUMMOM = MIN0( NMOM, 2

C ** LOOP OVER MOMENTS
DO 100 L - 0, NUMMOM

C
IF( NELEM.EQ.0 ) THEN

IF( L.EQ.0 ) PMOM( L,l ) 1.5 * ( AISQ + BISQ
IF( L.EQ.1 ) PMOM( L,I ) 1.5 * REAL( AlBIC

IF( L.EQ.2 ) PMOM( L,l ) 0.1 * PMOM( L,l
GO TO 100

END IF
C

IF( L.EQ.O ) PMOM( L, ) = 2.25 * C AlSQ + BISQ I 3.
IF( L.EQ.1 3 PMOM( L,I ) = 1.5 * REAL( AlBIC
IF( L.EQ.2 ) PMOM( L,l ) = 0.3 * BISQ

C
IF( NELEM.GT.1 3 THEN

IF( L.EQ.0 PMOM( L,2 3 2.25 * ( BISQ + AlSQ / 3.
IF( L.EQ.1 PMOM( L,2 ) PMOM( 1,1
IF L.EQ.2 PMOM( L,2 3 = 0.3 * A1SQ

END IF

C
IF( NELEM.GT.2 ) THEN

IF( L.EQ.0 PMOM( L,3 3 = 3.0 * REAL( AlBIC
IF( L.EQ.1 PMOM( L,3 3 = 0.75 * ( AlSQ + BISQ
IF( L.EQ.2 ) PMOM( L, 3 = 0.1 * PMOM( L,3

END IF

C
IF( NELEM.GT.3 ) THEN

IF( L.EQ.0 ) PMOM( L,4 3 = - 1.5 * AIMAG( AlBIC
IF( L.EQ.l ) PMOM( L,4 3 = 0.0
IF( L.EQ.2 ) PMOM( L,4 3 = - 0.2 * PMOM( L,4

END IF
C

100 CONTINUE
C

END IF
C

RETURN
END
SUBROUTINE LPCO2T ( NMOM, IPOLZN, MOMDIM, A, B, PMOM

C
C CALCULATE LEGENDRE POLYNOMIAL EXPANSION COEFFICIENTS (ALSO
C CALLED MOMENTS) FOR PHASE QUANTITIES IN SPECIAL CASZ WHERE
C NO. TERMS IN MIE SERIES = 2
C

INTEGER TPOLZN, MOMDIM, NMOM
REAL PMOM( 0:MOMDIM, *

COMPLEX A( * ), B( * )
COMPLEX A2C, B2C. CTMP, CA, CAC, CAT, CB, CBC, CBT, CG, CH,
S S2SIC( 0:4 ), TIT2C( 0:2 )
SQ( CTMP 3 = REAL( CTMP )**2 + AIMAG( CTMP )**2
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I
C

NELEM =IABS ( IPOLZN
DO 10 J - 1, MAXO( 1, NELEM

DO 10 L = 0, NMOM

PMOM( L,J ) = 0.0
10 CONTINUE

C
CA = 3. * A(1) - 5. * B(2)

CAT= 3. * B(1) - 5. * A(2)

CAC = CONJG( CA

A2SQ - SQ( A(2)
B2SQ = SQ( B(2)
A2C = CONJG( A(2)
B2C = CONJG( B(2)

C
C IF( IPOLZN.LT.0 ) THENIC ** LOOP OVER SEKERA MOMENTS

NUMMOM = MINO( NMOM, 2

DO 50 L = 0, NUMMOM

IF( L.EQ.0 ) THEN
PMOM( L,I ) = 0.25 ( SQ(CAT) + (100./3.) B2SQ

ELSE IF( L.EQ.1 ) THEN
PMOM( LI ) = (5./3.) REAL( CAT * B2C

ELSE
PMOM( L,I ) = (10./3.) * B2SQ

END IF

IF( NELEM.GT.1 ) THEN
IF( L.EQ.0 ) THEN

PMOM( L,2 ) = 0.25 * (SQ(CA) + (100./3.) A2SQ

ELSE IF( L.EQ.1 ) THEN
PMOM( L,2 ) = (5./3.) * REAL( CA * A2C

ELSE
PMOM( L,2 = (10./3.) A2SQ

END IF

END IF

IF( NELEM.GT.2 ) THEN
IF( L.EQ.0 ) THEN

TIT2C(L) = 0.25 * ( CAT*CAC + (100./3.)*B(2)*A2C
PMOM( L,3 ) = REAL( TlT2C(L)

ELSE IF( L.EQ.1 ) THEN
TIT2C(L) = (5./6.) * ( B(2)*CAC + CAT*A2C

PMOM( L,3 ) = REAL( TIT2C(L)
ELSE

TlT2C(L) = (10./3.) * B(2) * A2C
PMOM( L,3 ) = REAL( TIT2C(L)

END IF
END IF

C
IF( NELEM.GT.3 )PMOM( L,4 AIMAG( TIT2C(L)

50 CONTINUE

C
C ELSE

I
I
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C
CB = 3. * B(1) + 5. * A(2)
CBT- 3. * A(1) + 5. * B(2)
CBC = CONJG( CB )
CG = (1./3.) * ( CBC*CBT + 10.*( CAC*A(2) + B2C*CAT)
CH = 2.*( CBC*A(2) + B2C*CBT

C
C * LOOP OVER MUELLER MOMENTS

NUMMOM = MIN0( NMOM, 4
DO 100 L = 0, NUMMOM

IF( L.EQ.0 ) THEN
PMOM( L,1I = 0.25 * SQ(CA) + (1./12.) * SQ(CB)

$ + (5./3.) REAL(CA*B2C) + 5.*B2SQ
ELSE IF( L.EQ.1I THEN

PMOM( L,1 ) = REAL( CB C (1./6.)*CAC + B2C )
ELSE IF( L.EQ.2 ) THEN

PMOM( L,lI = (1./30.) * SQ(CB) + (20./7.) * B2SQ

$ + (2./3.) * REAL( CA * B2C
ELSE IF( L.EQ.3 ) THEN

PMOM( L,1I = (2./7.) * REAL( CB * B2C I
ELSE

PMOM( L,lI = (40./63.) * B2SQ
END IF

C
IF( NELEM.NE.1I THEN

IF( L.EQ.0 ) THEN

PMOM( L,2 ) = 0.25*SQ(CAT) + (1./12.) * SQ(CBT)

$ + (5./3.) * REAL(CAT*A2C) + 5.*A2SQ
ELSE IF( L.EQ.1I THEN

PMOM( L,2 ) = REAL( CBT * ((I./6.)*CONJG(CAT) + A2C)
ELSE IF( L.EQ.2 I THEN

PMOM( L,2 ) = (1./30.) * SQ(CBT) + (20./7.) * A2SQ
$ + (2./3.) * REAL( CAT * A2C

ELSE IF( L.EQ.3 ) THEN
PMOM( L,2 ) = (2./7.) * REAL( CBT * A2C

ELSE
PMOM( L,2 = (40./63.) * A2SQ

END IF
END IF

C
IF( NELEM.EQ.0 ) THEN

PMOM( L,1I = 0.5 ( PMOM(L,I) + PMOM(L,2)
GO TO 100

END IF
C

IF( NELEM.GT.2 ) THEN

IF( L.EQ.0 I THEN
S2SC(L) = 0.25 * ( CAC*CAT + CG + 20.*B2C*A(2)
PMOM( L,3 I = REAL( S2SIC(L)

ELSE IF( L.EQ.1I THEN
S2SIC(L) = (1.112.) * ( CAC*CBT + CBC*CAT + 3.*CH

PMOM( L,3 = REAL( S2SIC(L)
ELSE IF( L.EQ.2 ) THEN

S2S1C(L) = 0.1 * ( CG + (200./7.) * B2C * A(2)
PMOM( L,3 ) = REAL( S2SIC(L)

ELSE IF( L.EQ.3 I THEN
S2SIC(L) = CH I 14.



PMOM( L,3 ) - REAL( S2SIC(L)
ELSE

S2SIC(L) = (40./63.) - B2C - A(2)
PMOM( L,3 ) = REAL( S2SIC(L)

END IF
END IF

C
IF( NELEM.GT.3 ) PMOM( L,4 ) = AIMAG( S2SIC(L)

C
100 CONTINUE

C
END IF

C
RETURN
END
COMPLEX FUNCTION CONFRA( N, ZINV, XX

C
C COMPUTE BESSEL FUNCTION RATIO CAPITAL-A-SUB-N FROM ITS
C CONTINUED FRACTION USING LENTZ METHOD ( REF. 1, PP. 17-20
C
C ZINV - RECIPROCAL OF ARGUMENT OF CAPITAL-A
C
C INTERNAL VARIABLES
C
C
C CAK TERM IN CONTINUED FRACTION EXPANSION OF CAPITAL-A

C ( REF. 1, EQ. 25 )
C CAPT FACTOR USED IN LENTZ ITERATION FOR CAPITAL-A
C ( REF. 1, EQ. 27 )
C CDENOM DENOMINATOR IN -CAPT- ( REF. 1, EQ. 28B
C CNUMER NUMERATOR IN -CAPT- ( REF. 1, EQ. 28A
C CDTD PRODUCT OF TWO SUCCESSIVE DENOMINATORS OF -CAPT-
C FACTORS ( REF. 1, EQ. 34C )
C CNTN PRODUCT OF TWO SUCCESSIVE NUMERATORS OF -CAPT-

C FACTORS ( REF. 1, EQ. 34B
C EPSI ILL-CONDITIONING CRITERION
C EPS2 CONVERGENCE CRITERION

C KK SUBSCRIPT K OF -CAK- ( REF. 1, EQ. 25B
C KOUNT ITERATION COUNTER ( USED ONLY TO PREVENT RUNAWAY
C MAXIT MAX. ALLOWED NO. OF ITERATIONS

C MM + 1 AND - 1, ALTERNATELY
C

INTEGER N
REAL XX
COMPLEX ZINV
COMPLEX CAK, CAPT, CDENOM, CDTD, CNUMER, CNTN
DATA EPSI / I.E - 2 I, EPS2 / I.E - 8 /
DATA MAXIT / 10000 /

C
C **" REF. 1, EQS. 25A, 27

CONFRA = C N + 1 ) * ZINV
MM = - 1
KK =2 N+3

CAK = ( MM * KK ) * ZINV
CDENOM = CAK
CNUMER = CDENOM + 1.0 / CONFRA
KOUNT = I



C
20 KOUNT - KOUNT + 1

IF ( KOUND.GT.MAXIT
$ CALL ERRMSG( 'CONFRA--ITERATION FAILED TO CONVERGES', .TRUE.)

C
C * REF. 2, EQ. 25B

MM = -MM
KK = KK + 2

CAK = ( MM - KK ) ZINV

C REF. 2, EQ. 32
IF ( CABS( CNUMER/CAK ).LE.EPS1

S .OR. CABS( CDENOM/CAK ).LE.EPS1 ) THEN
C
C * ILL-CONDITIONED CASE -- STRIDE

C ** TWO TERMS INSTEAD OF ONE

C
C *** REF. 2, EQS. 34

CNTN = CAK * CNUMER + 1.0

CDTD = CAK * CDENOM + 1.0

CONFRA = ( CNTN / CDTD ) CONFRA
C ** REF. 2, EQ. 25B

MM = - MM
KK = KK + 2

CAK = C MM KK ) * ZINV

C ** REF. 2, EQS. 35

CNUMER = CAK + CNUMER / CNTN
CDENOM = CAK + CDENOM / CDTD
KOUNT = KOUNT + 1
GO TO 20

C
ELSE

C ** WELL-CONDITIONED CASE

C
C * REF. 2, EQS. 26, 27

CAPT = CNUMER / COENOM
CONFRA = CAPT * CONFRA

C ** CHECK FOR CONVERGENCE

C ** C REF. 2, EQ. 31

C
IF C ABS( REAL (CAPT) - 1.0 ).GE.EPS2

S.OR. ABS( AIMAG(CAPT) ) .GE.EPS2 ) THEN
C
C * REF. 2, EQS. 30A-B

CNUMER = CAK + 1.0 / CNUMER
CDENOM = CAK + 1.0 / CDENOM
GO TO 20

END IF
END IF

C
RETURN

C

END

SUBROUTINE MIPRNT( PRNT, XX, PERFCT, CREFIN, NUMANG, XMU,

$ QEXT, QSCA, GQSC, SELECT, NMOM, lPOLZN,

$ MOMDIM, PMOM, SFORW, SBACK, TFORW,

$ TBACK, S1, S2
C
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C PRINT SCATTERING QUANTITIES OF A SINGLE PARTICLEI C
LOGICAL PERFCT, PRNT( * ,SELECT
INTEGER IPOLZN, MOMDIM, NMOM, NUMANG

REAL GQSC, PMOM( 0:MOMDIM, * ), QEXT, QSCA, XX, XMU(I COMPLEX CREFIN, SFORW, SBACK, TFORW( * ,TBACK( *1

$ Sl( S , 2(*
C
CIC IF (PERFCT ) WRITE ( *1001 1XX
C IF ( NOT.PERFCT )WRITE (*,1002 1CREFIN, XX

C
IF (PRNT(1) .AND. NUMANG.GT.0 ) THEN

C WRITE ( *410 )
DO 10 I - 1, NUMANG

FIl =REAL( 51(I) ) 2 + AIMAG( S1(I) )**2IF12 =REAL( 52(I) 1 *2 + AIMAG( S2(I) )**2
C WRITE( *,1011 ) I, XMU(I), 51(I), 52(I), Sl(I)*CONJG(52(I)),
C $ FI1, F12, 0.5*(FI1+F12), (F12-Fll)/(FI2+F1l)I WRITE(10,1111) ACOS(XMU(I-))*57.29578, F12

1111 FORM.AT(2G16.8)
10 CONTINUE

C

C END IF

C

IF ( PRNT(2) ) THEN

WRITE (*,1020 )0.0, SFORW, TFORW(1), TFORW(2),

$ 180., SBACK, TBACK(1), TBACK(2)
WRITE C*,1022 IQEXT, QSCA, QEXT-QSCA, QEXT-GQSC

IF ( SELECT ) THEN
IF ( IPOLZN.EQ.0 THEN

NPQUAN =1

WRITE C*,1024 I PHASE FCN
ELSE IF (IPOLZN.GT.0 ITHEN

NPQUAN = IPOLZN
WRITE C*,1024 Iml ,' M2

ELSE S1 ' 2

NPQUAN = - IPOLZN
WRITE (*,1024 IRl R2

$ END IF R3 '2R4

C
FNORM = 4. /CXX**2 QSCAI DO 20 M =0, NMOM

WRITE C*,1026 ) M, ( FNORM*PMOM(M,NP), NP =1, NPQUAN1

20 CONTINUE
END IF

I C END IF
C

RETURN
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c

C 1001 FORMAT( //,' PERFECTLY CONDUCTING CASE, SIZE PARAMETER =',

C $ IP, E11.4 )
C 1002 FORMAT( //,' REFRACTIVE INDEX: REAL , 1P,EII.4,' IMAG ', E11.4,
C $ ', SIZE PARAMETER =', E11.4

C 1010 FORMAT( /,' COS(ANGLE) ------- Sl ---------------- S2 ',

C $ '------- -- S1*CONJG(S2) --- II=Sl**2',

C $ 12=S2**2 (I1+I2)/2 DEG POLZN'
C 1011 FORMAT( 14, F10.6, IP, 10E11.3 )

1020 FORMAT( /,' ANGLE',9X, 'S-SUB-I',17X, 'T-SUB-1', 17X, 'T-SUB-2',
$ /, (OP,F7.2, IP,6E12.3) )

1022 FORMAT( /,' EFFICIENCY FACTORS, EXTINCTION:', 1P,EII.4,
$ ' SCATTERING:', E11.4,' ABSORPTION:', E11.4,

$ ' RAD. PRESSURE:', E11.4 )
1024 FORMAT( /,' NORMALIZED MOMENTS OF :', 4A
1026 FORMAT( ' MOMENT NO.', 14, 4X, !P,4EI3.4

END
SUBROUTINE SMALLI ( XX, NUMANG, XMU, QEXT, QSCA, GQSC, SFORW,

$ SBACK, SI, S2, TFORW, TBACK, A, B
C
C SMALL-PARTICLE LIMIT OF MIE QUANTITIES IN TOTALLY REFLECTING
C LIMIT ( MIE SERIES TRUNCATED AFTER 2 TERMS
C
C AB FIRST TWO MIE COEFFICIENTS, WITH NUMERATOR AND
C DENOMINATOR EXPANDED IN POWERS OF -XX- ( A FACTOR

C OF XX**3 IS MISSING BUT IS RESTORED BEFORE RETURN
C TO CALLING PROGRAM ) ( REF. 2, P. 1508
C

INTEGER NUMANG
REAL GQSC, QEXT, QSCA, XX, XMU( *

COMPLEX A( 2 ), B( 2 ), SFORW, SBACK, Sl( * ), S2( ,

$ TFORW( * ), TBACK(
C

PARAMETER ( TWOTHR = 2./3., FIVTHR = 5./3., FIVNIN = 5./9.

COMPLEX CTMP

SQ( CTMP ) = REAL( CTMP )**2 + AIMAG( CTMP )**2
C
C

A( 1 ) CMPLX C 0., TWOTHR * 1 1. - 0.2 * XX**2

$ / CMPLX C 1. - 0.5 * XX**2, TWOTHR * XX**3

C
B( 1 ) CMPLX C 0., - ( 1. - 0.1 * XX**2 ) / 3.
$ / CMPLX C 1. + 0.5 * XX**2, - XX**3 / 3.

C
A( 2 = CMPLX (0., XX**2 /30.
B( 2 = CMPLX C 0., - XX**2 / 45.

C
QSCA = 6. * XX**4 * ( SQ( A() ) + SQ( B(1)
$ + FIVTHR * ( SQ( A(2) ) + SQ( B(2)

QEXT - QSCA

GQSC = 6. * XX**4 * REAL( A() * CONJG( A(2) + B(i)
$ + ( B(1) + FIVNIN * A(2) * CONJG( B(2)

C
RTMP = 1.5 * XX**3

SFORW RTMP * CAM1) + B(1) + FIVTHR * A(2d + B(2) )
SBACK = RTMP * CA(l) - B(1) - FIVTHR * A(2) - B(2)

TFORW( 1 ) = RTMP * CB(1) + FIVTHR * (2.*B(2) - A(2)
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TFORW( 2 ) - RTMP * CAM1) + FIVTHR * C2.-A(2) - B(2)

TBACK( 1 ) - RTMP * CB(1) - FIVTHR * C2.-B(2) + A(2)

TBACK( 2 ) - RTMP * CA) - FIVTHR * (2.-A(2) + B(2)

C
DO 10 J = 1, NUMANG

Sl( J ) = RTMP * ( AM1) + B(1) * XMU(J) + FIVTHR *

$ ( A(2) * XMU(J) + B(2) * ( 2.-XMU(J)**2 - 1. ))
S2( J ) = RTMP * ( B(1) + A(1) * XMU(J) + FIVTHR *

$ CB(2) * XMU(J) + A(2) * ( 2.*XMU(J)**2 - 1. )
10 CONTINUE

C " RECOVER ACTUAL MIE COEFFICIENTS

A( 1 ) = XX**3 * A( 1
A( 2 = XX**3 * A( 2

B( 1 = XX**3 * B( 1
B( 2 = XX**3 * B( 2

C
RETURN
END
SUBROUTINE SMALL2 ( XX, CIOR, CALCQE, NUMANG, XMU, QEXT, QSCA,
$ GQSC, SFORW, SBACK, S1, S2, TFORW, TBACK,
$ A,B)

C
C SMALL-PARTICLE LIMIT OF MIE QUANTITIES FOR GENERAL REFRACTIVE
C INDEX ( MIE SERIES TRUNCATED AFTER 2 TERMS
C
C A,B FIRST TWO MIE COEFFICIENTS, WITH NUMERATOR AND
C DENOMINATOR EXPANDED IN POWERS OF -XX- ( A FACTOR
C OF XX**3 IS MISSING BUT IS RESTORED BEFORE RETURN

C TO CALLING PROGRAM ) C REF. 2, P. 1508

C
C CIORSQ SQUARE OF REFRACTIVE INDEX

C

LOGICAL CALCQE

INTEGER NUMANG

REAL GQSC, QEXT, QSCA, XX, XMU( *

COMPLEX A( 2 ), B( 2 ), CIOR, SFORW, SBACK, SI( * S, $2( f ),
$ TFORW( * C, TBACK( *

C
PARAMETER ( TWOTHR = 2./3., FIVTHR = 5./3.
COMPLEX CTMP, CIORSQ

SQ( CTMP ) = REAL( CTMP )**2 + AIMAG( CTMP )**2

C

C
CIORSQ = CIOR**2

CTMP = CMPLX( 0., TWOTHR ) * C CIORSQ - 1.0

A(1) = CTMP * ( 1.0 - 0.1 * XX**2 + (CIORSQ/350. + I./280.)*XX**4)

$ ( CIORSQ + 2.0 + C 1.0 - 0.7 * CIORSQ ) * XX**2

$ - ( CIORSQ**2/175. - 0.275 * CIORSQ + 0.25 ) * XX**4

$ + XX**3 * CTMP * C 1.0 - 0.1 * XX**2

C
B(1) = (XX**2/30.) * CTMP * C 1.0 + (CIORSQ/35. - 1./14.) *XX**2

$ C 1.0 - C CIORSQ/15. - 1./6. C XX**2

C
A(2) = 0.1 * XX**2 ) * CTMP * C 1.0 - XX**2 / 14.

$ ( 2. * CIORSQ + 3. - C CIORSQ/7. - 0.5 ) * XX**2

C
QSCA = 6. * XX**4 * CSQ(A(1)) + SQ(B(1)) + FIVTHR * SQ(A(2))
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GQSC - 6. * XX**4 * REAL( AM) * CONJG( A(2) + B(1) )

QEXT - QSCA
IF ( CALCQE ) QEXT = 6. * XX * REAL( AM) + B(1) + FIVTHR * A(2)

C
RTMP - 1.5 XX**3
SFORW - RTMP * (AM1) + B(1) + FIVTHR * A(2) )
SBACK = RTMP * CA(1) - B(1) - FIVTHR * A(2)
TFORW( 1 ) = RTMP * (B(1) - FIVTHR * A(2) )
TFORW( 2 1 = RTMP * C A(1) + 2. * FIVTHR * A(2)
TBACK( 1 ) - TFORW( 1 )
TBACK( 2 1 = RTMP * CA) - 2. * FIVTHR * A(2)

C
DO 10 J = 1, NUMANG

SI( J ) = RTMP * ( AM) + ( B(1) + FIVTHR * A(2) ) XMU(J)

S2( 3 ) = RTMP * ( B(1) + A(l) * XMU(J) + FIVTHR * A(2)
$ * C 2. * XMU(J)**2 - 1.

10 CONTINUE
C *• RECOVER ACTUAL MIE COEFFICIENTS

A( 1 ) XX**3 * A( I
A( 2 ) XX**3 * A( 2
B( 1 1 XX**3 * B( 1 )
B( 2 ) C 0., 0.

C
RETURN
END
SUBROUTINE TESTMI ( QEXT, QSCA, GQSC, SFORW, SBACK, S1, S2,

$ TFORW, TBACK, PMOM, MOMDIM, OK

C
C COMPARE MIE CODE TEST CASE RESULTS WITH CORRECT ANSWERS
C AND RETURN OK=FALSE IF EVEN ONE RESULT IS INACCURATE.
C
C THE TEST CASE IS : MIE SIZE PARAMETER = 10
C REFRACTIVE INDEX - 1.5 - 0.1 I
C SCATTERING ANGLE = 140 DEGREES
C 1 SEKERA MOMENT
C RESULTS FOR THIS CASE MAY BE FOUND AMONG THE TEST CASES
C AT THE END OF REFERENCE (1).
C
C *** NOTE *** WHEN RUNNING ON SOME COMPUTERS, ESP. IN SINGLE
C PRECISION, THE 'ACCUR' CRITERION BELOW MAY HAVE TO BE RELAXED.
C HOWEVER, IF 'ACCUR' MUST BE SET LARGER THAN 10**-4 IN ORDER
C TO PASS THESE TESTS, YOUR COMPUTER IS PROBABLY NOT ACCURATE
C ENOUGH TO DO NON-TRIVIAL MIE COMPUTATIONS.
C

REAL QEXT, QSCA, GQSC, PMOM( 0:MOMDIM, )
COMPLEX SFORW, SBACK, SI( * , $2( * 1, TFORW( * 1, TBACK(
LOGICAL OK, WRONG

C
PARAMETER ( MAXMOM = 1 )
REAL ACCUR, TESTQE, TESTQS, TESTGQ, TESTPM( 0:MAXMOM )
COMPLEX TESTSF, TESTSB, TESTS1, TESTS2, TESTTF( 2 ), TESTTB( 2 1
DATA TESTQE / 2.459791 I, TESTQS / 1.235144 /,

$ TESTGQ / 1.139235 /, TESTSF / C 61.49476, -3.177994 ) /,
T ZT ,' f 1.493434, 0.2963657 )/

$ TESTS1 / C -0.1548380, -1.128972) I,
$ TESTS2 / C 0.05669755, 0.5425681) I,
$ TESTTF / C 12.95238, -136.6436 ), C 48.54238, 133.4656 ) /,
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$ TESTTB / ( 41.88414, -15.57833 ), ( 43.37758, -15.28196 /,

$ TESTPM / 227.1975, 183.6898 /

DATA ACCUR / I.E-4 /
C DATA ACCUR / 1.E-6 /

WRONG( CALC, EXACT ) = ABS( (CALC - EXACT) / EXACT ) .GT. ACCUR
C
C

OK = .TRUE.
IF ( WRONG( QEXT,TESTQE ) ) CALL TSTBAD( 'QEXT', -99, OK
IF ( WRONG( QSCA,TESTQS ) ) CALL TSTBAD( 'QSCA', -99, OK
IF ( WRONG( GQSC,TESTGQ ) ) CALL TSTBAD( 'GQSC', -99, OK

C
IF ( WRONG( REAL(SFORW), REAL(TESTSF) 3 .OR.

$ WRONG( AIMAG(SFORW), AIMAG(TESTSF) ) )

$ CALL TSTBAD( 'SFORW', -99, OK 3
C

IF ( WRONG( REAL(SBACK), REAL(TESTSB) ) .OR.
$ WRONG( AIMAG(SBACK), AIMAG(TESTSB)
$ CALL TSTBAD( 'SBACK', -99, OK

C
IF ( WRONG( REAL(S1(1)), REAL(TESTS1) .OR.

$ WRONG( AIMAG(SI(1)), AIMAG(TESTSI)
$ CALL TSTBAD( 'SI', 1, OK

C
IF C WRONG( REAL(S2(1)), REAL(TESTS2) .OR.

$ WRONG( AIMAG(S2(1)), AIMAG(TESTS2)
$ CALL TSTBAD( 'S2', 1, OK

DO 20 N - 1, 2
IF ( WRONG( REAL(TFORW(N)), REAL(TESTTF(N)) 3 .OR.

$ WRONG( AIMAG(TFORW(N)), AIMAG(TESTTF(N))

$ CALL TSTBAD( 'TFORW', N, OK )
IF C WRONG( REAL(TBACK(N)), REAL(TESTTB(N)) .OR.

$ WRONG( AIMAG(TBACK(N)), AIMAG(TESTTB(N)) )
$ CALL TSTBAD( 'TBACK', N, OK

20 CONTINUE

DO 30 M = 0, MAXMOM
IF ( WRONG( PMOM(M,1), TESTPM(M) 3 3

$ CALL TSTBAD( 'PMOM', M, OK
30 CONTINUE

RETURN

C
END
COMPLEX FUNCTION CSUM ( N, CX, ISKIP

C FORTRAN EQUIVALENT OF BLAS SUMMING ROUTINE FOR COMPLEX NUMBERS
C WITH A SKIP DISTANCE OF UNITY

COMPLEX CX( * )

CSUM = ( 0., 0. 3
DO 1 I 1 1, N

CSUM = CSUM + CX( I
1 CONTINUE

RETURN
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END
SUBROUTINE ERRMSG( MESSAG, FATAL

C
C PRINT OUT AN ERROR MESSAGE AND ABORT IF ERROR IS FATAL

C
LOGICAL FATAL
CHARACTER*(*) MESSAG
INTEGER MAXMSG, NUMMSG
SAVE MAXMSG, NUMMSG

DATA NUMMSG / 0 /, MAXMSG / 50 /

C
C

NUMMSG = NUMMSG + 1
IF ( NUMMSG.GT.MAXMSG ) THEN

WRITE ( *,99

STOP
END IF

C
IF ( FATAL ) THEN

WRITE *,100 ) MESSAG

STOP
ELSE

WRITE ( *,01 ) MESSAG

RETURN
ENDIF

C
99 FORMAT( //,' >>>>>>> TOO MANY ERRORS -- ABORTING K<<<<<',///

100 FORMAT( /,' * ERROR >>>>>> -, A

101 FORMAT( I,' * WARNING >>>>>> , A

END
SUBROUTINE WRTBAD ( VARNAM, ERFLAG

C
C WRITE NAMES OF ERRONEOUS VARIABLES

C

C INPUT VARNAM = NAME OF ERRONEOUS VARIABLE TO BE WRITTEN

C ( CHARACTER, LENGTH 8

C

C OUTPUT ERFLAG = LOGICAL FLAG, SET TRUE BY THIS ROUTINE
C ------------ ------------ ---- ---------------- --- ------------- ----------

CHARACTER*(*) VARNAM
LOGICAL ERFLAG

INTEGER MAXMSG, NUMMSG

SAVE NUMMSG, MAXMSG
DATA NUMMSG / 0 /, MAXMSG / 50 /

C
C

NUMMSG - NUMMSG + 1
WRITE C *, 10 ) VARNAM

ERFLAG = .TRUE.
IF ( NUMMSG.EQ.MAXMSG

$ CALL ERRMSG ( 'TOO MANY INPUT ERRORS. ABORTING...S, .TRUE.

RETURN

C
10 FORMAT( INPUT VARIABLE -, A,' IN ERROR

END
SUBROUTINE TSTBAD( VARNAM, INDX, OK
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C
C WRITE NAME (-VARNAM-) AND INDEX (-INDX-) OF VARIABLE FAILING

C SELF-TEST ( USE INDX = - 99 TO INDICATE A SCALAR -VARNAM-

C
CHARACTER*(*) VARNAM

LOGICAL OK
INTEGER INDX

C
OK = .FALSE.
IF( INDX.EQ.-99 I THEN

WRITE( , 101 ) VARNAM

ELSE
WRITE( *, 101 ) VARNAM, INDX

ENDIF
C

RETURN
C

101 FORMAT( /o SELF-TEST FAILED FOR OUTPUT VARIABLE A,
S, WITH INDEX', 14

END
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PROGRAM SLICE

C THIS PROGRAM WILL DRAW IN COLOR, SLICES OF THE PRESSURE PROFILE
C IN THE CELL.

IMPLICIT REAL (A-Z)

PARAMETER (NUN_COLORS=255)

INTEGER I
CHARACTER* 80 FILENAME

CHARACTER*1 CH
LOGICAL NORM
REAL PKPK(1000),PKPK_2(l000),x(1000),Y'I000)

COMMON VDID,WD_ID,VCMID

TYPE *

TYPE *, 'SLICE V1.2'

TYPE *

100 TYPE 1
1 FORMAT( ENTER X DATA FILE NAME -> $)

ACCEPT 2, FILENAME
2 FORMAT (A80)

OPEN (UNIT=I, NAME=FILENAME, STATUS = 
'OLD', READONLY)

TYPE 3

3 FORMAT(' ENTER Y DATA FILE NAME -> 'S)
ACCEPT 2, FILENAME

OPEN (UNIT=2, NAME=FILENAME, STATUS= 'OLD', READONLY)

TYPE 30

30 FORMAT(' NORMALIZE TO 1.0 (Y/N)? 'S)
ACCEPT '(Al) ',CH

NORMCH. EQ. 'Y' OR. CH. EQ. 'Y'

READ(1,4) ORIGX, ORIGY, ORIGZ, ORIGY1, ORIG_Z1, ORIG_PK_PK,

2 ORIG_FREQORIGTEMP1,ORIG_TEMP2, ORIGVOLT
4 FORMAT (F4 .1, 2x, F4 .1, 2x, F5 .1, 2x, F5.3, 2X, FS. 3, 2x, F5.2, 2x,

2 F5.2,2X, F4 .1, 2X, F4 .1, 2x, F4.2)

i=1
DO WHILE ( .TRUE.)

I=I+I
READ (1, 4, END=5) x (1) , TY, TZ, TY1, TZ1, PKPK (I)

X(I) =IFIX(X (I) +0.5)

IF(I.EQ.1)z SLICE=TZ

IF (NORM) THEN

PK PK(I)=PKPK(I) /ORIGPKPK
ELSE

PK PK MAX-MAX(PKPKMAX, PI P,(U))
ENDIF

END DO

5 x(1)=I-2
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PKPK(1)=I-2

CLOSE (UNIT=l)

READ (2, 4) oRIGX, ORIGY, ORIGZ, ORIG_Y, ORIG_Z, ORIG2PKPK,

2 ORIGFREQ,ORIGTEMP 1,ORIGTEMP2,ORIGVOLT

I-1

DO WHILE(. TRUE.)
I=I+l

READ(2,4,END=6)TX, Y(I),TZ,TYI,TZ1,PK2PK2(I)

Y (I) =IFIX(Y (I) +0.5)
IF(I.EQ.1)Z SLICEI=TZ

IF (NORM) THEN

PK PK 2(1)=PKPK_2C(I)/ORIGPKPK
ELSE

PK PK 2 MAX=MAX(PK PK_2_MAX, PKPK2(I))
ENDIF -

END DO

6 Y(1)=I-2

2K_PK_2(1)=I-2

CLOSE (UNIT=2)

IF(ZSLICE.NE.Z_SLICE1)STOP'SLICES ARE NOT THE SAME.

IF (NORM) THEN

PK PK MAX=1.0
ELSE

PK PK MAX=MAX(PK2PK-MAX, PKPK_2_MAX)
ENDIF

DO I=2,IFIX(X(1) +1) ,1
PK PK(I) =MIN(PK2PKMAX, PKPK(I))*( (NUMCOLORS+) /PK2PKMAX)

END DOb

DO 1=2, IFrX(Y(1) +1), 1

PK PK 2(I)=MIN(PK2PKMAX,2PK2PK2(I))*((NUMCOLORS+) /PK2PKMAX)
END DO

CALL INITGRAPH

CALL GRAPH_X_SLICE (X, PKPK)

CALL GRAPHYSLICE(Y, PKPK_2)

IF(X (1) .NE.Y (1) )TYPE *, WARNING; SLICE LENGTHS ARE DIFFERENT.

C TYPE *, 'SLICE DATA'

C DO 1-2, IFIX (MIN (X (1) ,Y (1) +1,2
C IF(X(I) .NE.Y(I) )TYPE *,X(I), ' <> ' ,Y(I)

C IF(X(I+l) .NE.Y(I+l))TYPE *,X(I+l), ' <> ',Y(1 +1)

C TYPE 10, IFIX(X() ),IFIX(PK_PK(I) 0.5) ,IFIX2(PK PK 2 (: +0.5) ,

C 2 IFIX(XCI+ ) ,IFIX(PKPK(I+1) +0.5) , IFIX(PKPK_2 (I+l) +0.5)
Clo FORMAT(' '12' lI2' , l2' '12' '12' , 12)
C END DO

200 TYPE *

TYPE *, 'ENTER ONE OF THE FOLLOWING:



256

TYPE ~. 1. SAVE PICTURE TO DISK'

TYPE ~, 2. RESTART PROGRAM'

TYPE ~, 3. EXIT PRORAM,

ACCEPT (Al) ', CH

IF (CH. EQ. l ) THEN
CALL SAVETODISK
GoTO 200

ELSE IF (CH. EQ.12') THEN

c CALL ERASEDISPLAY

GOTO 100
ELSE

C CALL ERASEDISPLAY
CALL EXIr

ENDIF

END
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3 PRCA PM SHAPE

VIRTUAL DRIVE(16384) WAVE1 (16384) ,WAVE2 (16L8
4

' ,DC(16384)3 INTEGER DRIVE, WAVE1, WAVE2, DC

INTEGER ROW, COL, NCHAR, I, OSCADR, GENADR, INFO (50) , MAXVAL, MAXV
INTEGER KOUNT

REAL GEN, ATEMP, WTEMP, WATT, FREQ, RMS, RVAL, PERCNT

BYTE CTIME (9) ,FILE(80) ,STR(80) ,CFILE (15) ,CH

LOGICAL THRESH, ENABLE

COMMON /MAIN/ CTIME

DATA CTIME/9*0/, THRESH/. FALSE./, INFO/50*0/,MAXVAL/409
7

/

DATA PERCNT/0.25/, KOUNT/0/, ENABLE/ .TRUE./

OSCADR = 4 !HP SCOPE ADDRESS

GENADR = 17 !GENERATOR ADDRESS

CALL IBIFC

CALL IBTERM(10)

CALL SETOSC (OSCADR)
CALL HEADER('SHAPE OSCILLATION DATA COLLECTION')

CALL IBSEOI ( ' HEAD 0 ',, GENADR)
CALL GETGEN (GEN, FREQ, GENADR, OSCADR)
CALL TIME(CTIME)

CALL UTIME(CTIME, 1, 1)

CALL OPT (1, 'CURRENT TIME: ', ,CTIME)

CALL OPT(2, ' LASER WATTAGE: ',WATT, 'WATTS' )
CALL OPT ( 3, ' GENERATOR : ',GEN, ' VOLTS' )

CALL OPT(4, 'GENERATOR: ',FEQ/100., 'KHZ')

CALL OPT(5, 'AMBIENT TEMP: ',ATEMP, 'DEG C')

CALL OPT(6, 'WATER TEMP: ',WTEMP, 'DEG C')
CALL OPT(7, 'GET OSCILLOSCOPE WAVEFORMS',,)

CALL OPT (8, 'WRITE ACQUIRED WAVEFORMS',, )
CALL OPT (9, 'START THRESHOLD TRIGGER',,)

CALL OPT(10, 'GET NEW THRESHOLD',)

CALL OPT(1, 'THRESHOLD: ',FLOAT (MAXVAL) 'UNITS')

CALL OPT(12, 'CRITERIA %: ',PERCN'T*100., '%')

CALL OPT(13, 'ENABLE PANEL CONTROL',,)

CALL OPT(14, 'RESET "CURRENT FILE"',,)

CALL OPT(15, 'CURRENT FILE: ',,CFILE)

CALL OPT(16, 'EXTT PROGRAM',,)

CALL PROMPT)'ENTER FIRST "CURRENT STATE" FILE NAME -> )

ACCEPT 5,NCHAR, (CFILE() , I=, 14,I)
5 FORMAT (Q, 14AI)

FILE (NCHAR+1) =0
CALL NXTFIL(CFILE)

OPEN (UNIT = l., NAME=CFI LE, TYPE
=

' NiW'
WRITE (1, 6)

6 FORMAT (' SCATTER GEN LASER GEN AMB. WAT. '/

2 ' TIMF MV C VOLTS WATTS ZFIQ TEMP 7E.P ' )

MAXROW= 8

ROW=I

COL= l

I
I
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8 CALL IPOKE("44,IPEEK("44).OR."50100)

CALL POS(18,1)

TYPE 80,27

80 FORMAT ( '+ 'A1 ' J<RETURN> CHOOSES SELECTION'/

2 ' <ARROWS> MOVES TO SELECTION'/

2 ' <SPACE> GETS CURRENT VALUES, WRITES THEM AND ',

2 'GETS A NEW THRESHOLD'/

2 ' <NUMBER> INCEREMENTS VOLTAGE BY <NUMBER> -0.001'

2 ' R PERFORMS: <SPACE> <1>'/

2 ' F FORCES A TRIGGER'$)

IF (ENABLE) CALL CLRESR (OSCADR)

IF (ENABLE) CALL CLROER (OSCADR)

9 CALL POS (ROW+ 3, COL)

10 ICH=ITTINR()
CALL UTIME (CTIME, ROW, COL)

CALL GETADO (IVAL, 8)

IF(IVAL.GT.MAXVAL.AND.THRESH)GOTO 5000

IF(ICH.EQ.70.OR.ICH.EQ.102)GOTo 4000

IF (ICH.EQ. 32.OR.ICH.EQ.82)GOTO 1800

IF (ICH.GE. 49.AND.!C14.LF.57)GOTO 6000

IF(ICH.LE.0.OR.ICH.EQ.27.OR.ICH.EQ.91.OR.ICH.EQ.10)GOTO 10

GOTO(100,200, 300, 400) ICH-64
IF(ICH.EQ.13)GOTO 500

IF(ICH.EQ.23)GOTO 7000

11 TYPE 12, 7

12 FORMAT ( ' +'A1$)
GOTO 10

C UP ARROW

100 ROW=ROW-1
IF (ROW. LE. 0) ROW=MAXROW

GOTO 9

C DOWN ARROW

200 ROW=ROW+1

IF (ROW. GT .MAXROW) ROW-1
GOTO 9

C RIGHT ARROW

300 COL=COL*40

rF (COL.GT. 4 1) CCL=I

GOTO 9

C LEFT ARROW

4 00 COL=COL-40

'F(COL. LE. 0) COL=41

GOTO 9
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C RETURN

500 CALL IPOKE("44,IPEEK("44) .AND. "127677)

GOTO(1100, 1500,1200,1700,1300,1400,1600,1900,2000,2200,11
2 ,2100, 2400,2500, 11, 2300) (ROW-1) *2+1,MAX0 (0, COL-40)
CALL ERRMSG ( ' ILLEGAL SELECTION. ')
CT TO 11

C TIME

1100 CALL ERRMSG( 'CAN' 'T CHANGE THE TIME.')

GOTO 8

C SET GENERATOR VOLTAGE

1200 CALL PROMPT('ENTER VOLTAGE (VOLTS) -> ')

READ (5, 1201, ERR1=210) RVAL

1201 FORMAT(G)

GEN-RVAL

1202 CALL SETGEN(GEN,FREQ,GENADR,OSCADR)

CALL GETGEN (GEN, FREQ, GENADR, OSCADR)

CALL OPT (3, 'GENERATOR: ',GEN, 'VOLTS')

COTO 8
1210 CALL ERRMSG ('YOU MUST USE A REAL NUMBER.')

COTO 8

C AMBIENT TEMP

1300 CALL PROMPT('ENTER AMBIEMT TEMPERATUPE (DEG C) ->

READ (5, 1201, ERR=1210) RVAL

ATEMP=RVAL

CALL OPT(5, 'AMBIENT TEMP: ',ATEMP, 'DEG C')

GOTO 8

C WATER TEMP

1400 CALL PROMPT('ENTER WATER TEMPERATURE (DEG C) -> ')

READ (5, 1201, ERR=1210) RVAL

WT'EMP=RVAL

CALL OPT(6, 'WATER TEMP: ',WTEMP, 'DEG C')

GOTO 8

C LASER WATTAGE

1500 CALL PROMPT('ENTER LASER WATTAGE (WATTS) -> ')

READ(5, 1201,ERR=1210lRVAL
WATT-RVAL

CALL OPT (2, ' LASER WATTAGE: ',WATT, 'WATTS')

GOTO 8

C GET WAVEFORMS

1600 IF(. NOT. ENABLE) GOTO 1610

CALL PROMPT( 'TRANSFER RECORDS I OR 2? 1
ACCEPT *,IREC

IF (IREC.NE. 2) IREC=1
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CALL GETWAV (1, DC, OSCADR, I REC)

CALL GETWAV (2, DRIVE, OSCADR, IREC)

CALL GETWAV (3, WAVE1, OSCADR, IREC)

CALL GETWAV (4,WAVE2,OSCADR, IREC)

WRITE(l,*) 'TRANSFERRING WAVEFORMS, IREC =',IREC

GoO 8
1610 CALL ERRMSG ( 'YOU MUST DISABLE PANEL CONTROL! )

GOTO 8

C SET GENERATOR FREQUENCY

1700 CALL PROMPT('ENTER FREQUENCY (KILOHERTZ) -> ')

RA(5, 1201, ERO-1210) RVAL
FREQ=RVAL* 1000.
CALL SETGEN (GEN, FREQ, GENADR, OSCADR)

CALL GETGEN (GEN, FREQ, GENADR, OSCADR)

CALL OPT (3, ' GENERATOR: ',GEN, 'VOLTS')

CALL OPT (4, 'GENERATOR: ',FREQ/1000., 'KHZ')

GOTO 8

C GET/WRITE CURRENT STATE

1800 CALL UTIME (CTIME, ROW, COL)

CALL PROMPT(TRIGGERING

CALL GETRMS (RMS)

CALL GETGEN (GEN, FREQ, GENADR, OSCADR)

CALL OPT (3, 'GENERATOR: ',GEN, ' VOLTS')

CALL OPT (4, 'GENERATOR: ',FREQ/1000., 'KHZ')

WRITE (1, 1807) (CTIME (I), I=1, 8, 1),R NS, GEN, WATT, FREQ/1000.,

2 ATE4P,WTE4P

1807 FORMAT(' '8A1' 'F7.3' 'F6.3' 'F5.3' 'F5.2' 'F4.1' 'F4.1)

CALL POS (13, 1)
TYPE 1805,27,RMS

1805 FORMAT('+'AI' [KCURRENT RMS VALUE: 'F7.3' MV'$)
IF(ICH.EQ.32.OR.ICH.EQ.82)GOTO 2200 !GET NEW THRESHOLD ON <SPACE> ALSO

GOTO 8

1810 TYPE 1811,NCHAR, (STR(I),I-1,LEN(STR),1)

1811 FORMAT(' ERROR: NCHAR-'I'STR='80AI)
CALL EXIT

C WRITE WAVEFORMS

1900 CALL PROMPT('HOW MANY DATA POINTS?

ACCEPT -, N

IF (N. LE. 0) GOTO 8

WRITE(1,*) 'WRITING WAVEFORMS, SIZE =',N

CALL NXTFIL(CFILE)

OPEN (UNIT=2, NAME-CFILE,TYPE= 'NEW')
WRITE(2, 1901) (DC(1) ,11,N, 1)

CLOSE (UNIT=2)

CALL NXTFIL(CFILE)

OPEN (UNIT-2, NAME-CFILE, TYPE= ' NEW')
WRITE (2, 1901) (DRIVE (I) , I=I, N, 1)
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1901 FORMAT(' '15)

CLOSE (UNIT=2)

CALL NXTFIL(CFTLF)

OPEN (UNIT=2, NAME=CFILE, TYPE= ' NEW ')
WRITE (2, 1901) (WAE1 (I), i-1,N, 1)

CLOSE (UNIT=2)

CALL NXTFIL(CFILE)
OPEN (UNIT=2, NAMECFILE, TYPE= ' NEW 1)

WRITE (2, 1901) (WAVE2 (I), I=1,N, 1)
CLOSE (UNIT=2)

CLOSE (UNIT=1)
CALL NXTFIL(CFILE)

GOTO 2510

C START THRESHOLD TRIGGERING

2000 THRESH=. NOT. THRESH

IF(. NOT. THRESH) CALL OPT(9, 'START THRESHOLD TRIGGER',, )
IF(THRESH)CALL OPT(9, 'STOP THRESHOLD TRIGGER ',,)

IF (THRESH) WRITE (1, *) 'THRESHOLD TRIGGERRING STARTED'
IF ( .NOT.THRESH) WRITE (1, 'THRESHOLD TRIGGERRING STOPPED

2 DUE TO USER'

GOTO 8

C CRITERIA PERCENTAGE

2100 CALL PROMPT('ENTER NEW CRITERIA PERCENT (IE 0.12 = 12%) -> ')
ACCEPT *, PERCNT

WRITE (1, *) 'CRITERIA PERCENTAGE: ',IFIX (PERCNT*100.)

CALL OPT(12, 'CRITERIA %: ',PERCNT*100., '%')

GOTO 8

C GET NEW THRESHOLD VALUE

2200 CALL PROMPT( 'GETTING NEW THRESHOLD ., .

MAXVAL=9999

Do 2220 J=l,20,1
MAXV-0

Do 2210 I=,200, 1

CALL GETADO (IVAL, 8)

MAXV=MAXO (IVAL, MAXV)

2210 CONTINUE

MAXVAL=MIN0 (MAXVAL, MAXV)

2220 CONTINUE
MAXVAL=MAXO (MAXVAL+IFIX (PERCNT*FLOAT (MAXVAL) 20)

CALL OPT(11, 'THRESHOLD: ',FLOAT(MAXVAL), UNITS')
WRITE (1, *) 'CURRENT THRESHOLD: ',MAXVAL

IF(ICH.EQ.82)GOTO 6000 !R MEANS INCREMENT GEN ALSO

GOTO 8

C EXIT PROGRAM

2300 CLOSE(UNIT=I)

CALL POS (24, 1)
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CALL EXIT

C ENABLE/DISABLE REMOTE

2400 ENABLE-. NOT. ENABLE
IF (ENABLE) II-IBREMO(l)

IF ( .NOT. ENABLE) II=IBREMO (0)
IF (ENABLE) CALL OPT (13, -ENABLE PANEL CONTROL ',,)

IF(.NOT.ENABLE)CALL OPT(13, 'DISABLE PANEL CONTROL ',,)

IF (ENABLE) WRITE (i, *) 'PANEL CONTROL USER DISABLED'

IF (. NOT. ENABLE) WRITE(,*) ' PANEL CONTROL USER ENABLED'

GOTO 8

C RESET "CURRENT FILE"

2500 CALL PROMPT( 'Do YOU WANT TO KEEP THE CURRENT FILE (YIN)?')

ACCEPT 2501,Cn
2501 FORMAT (Al)

IF(CH.EQ. 'Y*.OR.CH.EQ. 'Y')GOTO 2502
IF( NOT. (CH.EQ. 'N' .OR.CH.EO. 'N' ) )GOTO 2500

CLOSE (UNIT-1, DISPOSE=' DELETE')
GOTO 2510

2502 CLOSE (UNIT=1)

DO 2503 I=1,5,1
2503 CALL NXTFIL(CFILE)

2510 OPEN (UNIT=1, NAME=CFILE, TYPE='NEW')

WRITE (1, 6)
GOTO 8

C FORCED TRIGGER

4000 CALL IBSEOI ('START',, OSCADR)
CALL MWAIT(128,OSCADR)

CALL PROMPT ( 'TRIGGER FORCED!

WRITE(1,*) '- TRIGGER FORCED BY USER '

IF (THRESH) WRITE ( i, '

1 'THRESHOLD TRIGGERRING STOPPED DUE TO FORCING'

THRESH= .FALSE.

CALL WRTSET (OSCADR, GENADR)

CALL OPT (9, 'START THRESHOLD TRIGGER',,)

GOTO 8

C THRESHOLD CRITERIA MET

5000 TYPE 12, 7
CALL IBSEOI (' START',, OSCADR)
CALL MWAIT(128,OSCADR)

TYPE 12,7

CALL PROMPT( 'CRITERIA MET!')

WRITE(1,*) '-* CRITERIA MET * THRESHOLD: ',IVAL

THRESH- .FALSE.

WRITE(l,*) 'THRESHOLD TRIGGERRING STOPPED DUE TO CRITERIA'

CALL WRTSET (OSCADR, GENADR)

CALL OPT(9, 'START THRESHOLD TRIGGER',,)

GOTo 8
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I C INCRE4ENT GEN

6000 IF(ICH.EO.82)GEN-GEN+0.001

IF (ICH.NE. 82) GEN-GEN+FLOAT (ICH-48) *0. 001

GoTo 1202

C REPAINT SCREEN

3 7000 CALL HEADER('SHAPE OSCILLATION DATA COLLECTION')
CALL OPT(1, 'CURRENT TIME: ', ,CTIME)

CALL OPT (2, ' LASER WATTAGE: ' , WATT, ' WATTS')

CALL OPT(3, 'GENERATOR: ',GEN, ' VOLTS ' )
CALL OPT(4, 'GENERATOR: ',FREQ/1000., 'KHZ')
CALL OPT(5, 'AMBIENT TEMP: ',ATEMP, 'DEG C')

CALL OPT(6, 'WATER TEMP: ',WTEMP, 'DEG C')

CALL OPT (7, 'GET OSCILLOSCOPE WAVEFORMS',,)
CALL OPT(8, 'WRITE ACQUIRED WAVEFORMS',,)
CALL OPT (9,' START THRESHOLD TRIGGER',,)

CALL OPT (10, 'GET NEW THRESHOLD',,)

CALL OPT(11, 'THRESHOLD: ',FLOAT (MAXVAL) , 'UNITS')

CALL OPT(12, 'CRITERIA %: ',PERCNT*100., '%')

CALL OPT (13, 'ENABLE PANEL CONTROL',,)

CALL OPT(14, 'SET NEW "CURRENT FILE"',,)

CALL OPT(15, 'CURRENT FILE: ',,CFILE)

CALL OPT (16, 'EXIT PROGRAM',,)

CALL POS (13, 1)

TYPE 1805, 27,RMS

GOTO 8

END
SUBROUTINE HEADER (STR)

BYTE STR(1)

TYPE 1,27,27,27

1 FORMAT('+'Al'[R'Al' (J'AI'#3'$)

TYPE 2, (STR(I),I=l,LEN(STR),1)

2 FORMAT ( ' + 'AI$)

TYPE 3, 27,27
3 FORMAT ( '+'Al ' [2H'A1#4'$)

TYPE 2, (STR(I),I=1,LEN(STR), 1)

I RETURN
END

SUBROUTINE OPT (NUM, STRI, VALUE, STR2)
INTEGER NUM, ROW, COL
BYTE STR1 (1), STR2 (1)
REAL VALUE

ROW- (NUM- I) 12+4
COL= 1
IF (MOD (NUM, 2) . EQ. 0) COL=41

CALL POS (ROW, COL)

3 IF(IADDR(STR1) .EQ.-l)GOTO 100
TYPE 1,27

1 FORMAT('+'AI' ([M'$)3 TYPE 2, (STRI (I), I-1,LEN(STR1) ,1)

I
I
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2 FORMAT ( +'A1$)
TYPE 3,27

3 FORMAT( '+'Al' [M' $)

100 IF(IADDR(VALUE) .EQ.-1)GOTO 200

IF(ABS(VALUE) .GT.32767.)GOTO 150

IF(IFIX (VALUE) .NE.VALUE)GOTO 150

TYPE 101, IFIX (VALUE)

101 FORMAT('+ '15$)

GOTO 200

150 TYPE 102.VALUE

102 FORMAT('+ 'F7.3$)

200 IF(IADDR(STR2) .EQ.-l)GOTO 300

TYPE 2, ',(STR2(I),I=I,LEN(STR2),1)

300 RETURN
END

SUBROUTINE POS (ROW, COL)

INTEGER ROW, COL

TYPE 1,27,Row/10+48,MOD(ROW, 10) +48,COL/10+48,MOD(COL, 10) +48

1 FORMAT('+'Al' ('2Al'; '2AI'H'$)

RETURN
END

SUBROUTINE PROMPT (STR)

BYTE STR(I)

CALL Pos (22, 1)

TYPE 1,27

1 FORMAT( '+'Al ' (7M'$)

TYPE 2, (STR(I),I=l,LEN(STR),1)

2 FORMAT ( '+'A1$)

TYPE 3,27,27

3 FORMAT('+'Al' [M'A1 [J '$)

RETJRN
END

SUBROUTINE ERRMSG (STR)

BYTE STR (1)

CALL POS (23, 1)

TYPE 1,27, 7

1 FORMAT ( '+'A [7M'A$)

TYPE 2, (STR(1) , I= , LEN (STR) ,)
2 FORMAT( ' +'A1$)

TYPE 3,27,27
3 FORMAT(' +'Al' [M'AI J'$)

CALL WAIT

RETURN
END

INTEGER FUNCTION LEN(STR)

BYTE STR(I)

I=1
IF(STR(I) .EQ.0)GOTo 2
I=I+1
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GOTO 1

2 LEN-I- 1

RETURN
END
SUBROUTINE UTIME (CTIME, ROW, COL)

INTEGER ROW, COL

BYTE CTIME(9),OTIME(9)

DATA OTIME/9*0/

CALL TIME (CTIME)

IF(CTI-E(8) EQ.OTIME(8) )RETURN

DO 1 r=1,8,1

OTIME (I) =CTIME (I)
OTIME (9) =0

CALL OPT(1, 'CURRENT TIME: ',,OTIME)

CALL POS (ROW+3, COL)

RETURN
END

SUBROUTINE GETGEN (GEN, FREQ, GENADR, OSCADR)

REAL GEN, FREQ

INTEGER GENADR, NCHAR

BYTE STR(80)

CALL IBSEOI ( 'FR?', , GENADR)
NCHAR=IBRECV (STR, 80, GENADR) -2

DECODE (NCHAR, 1, STR) FREQ

FORMAT (F12.3)

CALL IBSEOI ('AM?, GENADR)

NCHAR=IBRECV (STR, 80, GENADR) -2

DECODE (NCHAR, 2, STR) GEN

2 FOMAT (F12. 6)

IF (GEN.GE.0.03) CALL IBSEOI('CHANNEL 2;RANGE 200.0 MV',,OSCADR)

IF(GEN.LT.0.03)CALL IBSEOI('CHANNEL 2;RANGE 100.0 MV',,OSCADR)

RETURN
END

SUBROUTINE SETGEN (GEN, FREQ, GENADR, OSCADR)

REAL GEN, FREQ

INTEGER GENADR, NCHAR, OSCADR

BYTE STR1 (16) ,STR2 (16)

DATA STR1I/A', 'MI,5*0, 1 .',6*0, IV', 'R'/
DATA STR2/ F , R I ,8*0 , ' . , 3 0 , 'H ', 'Z /

ENCODE (12, 1, STR2 (3) ) FREQ

FORMAT (F12.3)

CALL IBSEOI (STR2, 16,GENADR)

ENCODE (12,2, STR1 (3)) GEN

2 FORMAT (F12.6)
CALL IBSEOI (STR1, 16, GENADR)
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IF(GEN.GE.0.03)CALL IBSEOI('CHANNEL 2;RANGE 200.0 MV',,OSCADR)

IF(GEN.LT.O.03)CALL IBSEOI ('CHANNEL 2;RANGE 100.0 MV',,OSCADR) 1

RETURN 3
SUBROUTINE GETWAV (CHAN, WAVE1, OSCADR, IREC)

VIRTUAL WAVEI (16384)

INTEGER CHAN, OSCADR, WAVE1, I, J, K, LENG, NCHAR, IREC

BYTE STR(80) , STEMP (4) WAVE (4096)

CALL IBSEOI ( 'WAVEFORM FORMAT WORD', ,OSCADR)

CALL CFILL('WAVEFORM SOURCE CHANNEL 0 RECORD 1',STR)

STR(25) =CHAN+48
STR(34) =IREC+48

CALL IBSEOI (STR, , OSCADR)

CALL IBTERM() 3
CALL IBSEOI ( 'WAVEFORM DATA?',, OSCADR)

NCHAR=IBRECV (STEMP, 4, OSCADR)
LENG (FLOAT (STEMP (3) .AND. "377) *256. +FLOAT (STEMP (4) .AND. "377) /2.

CALL POS(14,1)
TYPE 1701, LENG

1701 FORMAT('+TOTAL NUMBER OF DATA POINTS: 'I$)
K=

DO 1720 I=1,LENG,2048
CALL POS (15, 1)
TYPE 1702,K-I

1702 FORAT( ' +NUMBER OF DATA POINTS TRANSFERRED: 'I$)

NCHAR=rBRECV (WAVE, 4096, OSCADR)
DO 1710 J=I,NCRA,2

WAVE1(K)-(WAVE(J) .AND. "377) *256+ (WAVE (J+l) .AND. "377)
K=K+I

1710 CONTINk I
1720 CONTINUE

CALL PoS (15, 1)
TYPE 1702, x-I

CALL POs (14, 1)

TYPE 1725.27
1725 FORMAT ( ' + 'Al'[J'$)

CALL IBTERM(10)

RETURN
END

SUBROUTINE CFILL (STR, STRI) IBYTE STR (1) ,STRI (1)

INTEGER I

1=l

STRI (1) =0

IF(STR(I) .EQ.0)GOTO 2
STRI (I) =STR (I)
I=l+l

GOTO 1 3
2 STRI (I) =0

RETURN
END

SUBROUTINE SETOSC (OSCADR)

I
3
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INTEGER OSCADR
BYTE CH

CALL HEADER('HP 5183 INSTRUMENT SETTINGS')

CALL IBSEOI ( 'PRESET;TRACE 4 ', , OSCADR)

CALL IBSEOI('SWEEP SINGLE;TRIGGER SOURCE EXTERNAL' ,,OSCADR)

CALL POS (5, 1)
TYPE 2

2 FORMAT('+SINGLE SWEEP, EXTERNAL TRIGGERING'S)

CALL IBSEOI('MAIN 1.0 US',,OSCADR)

CALL POS (5, 40)

TYPE 3

3 FORMAT ( '+SAMPLING RATE: 1.0 MICROSECONDS/SAMPLE '$)

CALL IBSEOI ( ' TRIGGER LEVEL EXTERNAL 3.0 V',, OSCADR)

CALL IBSEOI (' TRIGGER MODE EXTERNAL POS', , OSCADR)

C CALL IBSEOI C 'TRIGGER POSITION -50 PERCENT', OSCADR)

CALL PoS(7,1)

TYPE 4

4 FORMAT('+TRIGGER SETTINGS'$)

CALL POS (8, 1)

TYPE 5

5 FORMAT ( '+EXTERNAL LEVEL 3. 0V'$)

CALL Pos (8, 40)

TYPE 6

6 FORMAT ('+POSITIVE SLOPE TRIGGERING' $)

CALL POS(9, 1)

C TYPE 7

C7 FORMAT('+50t PRE-?RIGGERING'S

CALL POS (9, 40)
TYPE 8

8 FORMAT ( '+TRIGGER SOURCE: HP GENERATOR SYNC'$)

CALL POS(1,)

TYPE 80

80 FORMAT( '+CHANNEL SETTINGS'$)
CALL P0S (12, 1)

TYPE 9

9 FORMAT ( '+ CHANNEL 1 CHANNEL 2 CHANNEL 3

2 'CHANNEL 4 '$)

CALL IBSEOI ('CHANNEL 1;CHANNEL CONFIGURE SINGLE', OSCADR)

CALL IBSEOI ('CHANNEL 2;CHANNEL CONFIGURE SINGLE',, OSCADR)

CALL IBSEOI ('CHANNEL 3;CHANNEL CONFIGURE SINGLE',, OSCADR)

CALL IBSEOI ( 'CHANNEL 4; CHANNEL CONFIGURE DI FF ',,OSCADR)

CALL POS(13,1)

TYPE 10

10 FORMAT( '+SINGLE ENDED SINGLE ENDED SINGLE ENDED

' 'DIFFERENTIAL'$)

CALL IBSEOI('CHANNEL 1;RANGE 1.0 V;COUPLING DC',,OSCADR)

CALL IBSEOI('CHANNEL 2;RANGE 100.0 MV;COUPLING AC',,OSCADR)

CALL IBSEOI('CHANNEL 3;RANGE 200.0 MV;COUPLING AC', ,OSCADR)

CALL IBSEOI('CHANNEL 4;RANGE 200.0 MV;COUPLING AC',,OSCADR)

CALL Pos (14,1)
TYPE 11

11 FORMAT('+ +/-1.OV +/-100MV +/-200mV
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2' +/-200MV $)
CALL POS (15, 1)
TYPE 12

12 FORMAT ( ' + DC AC AC

2'AC'$)

CALL IBSEOI ( 'LENGTH 32768', ,OSCADR)

CALl POS(16,1)

TYPE 13
13 FORMAT('+32768 SP-MPLES 32768 SAMPLEs 32766 SAMPLES

2'32768 SAMPLES'S)

CALL CLRESR (OSCADR)

CALL CLROER (OSCADR)

CALL PROMPT( 'PRESS <RETURN> TO CONTINUE')

ACCEPT 100,CH

100 FORMAT (Al)

RETURN
END
SUBROUTINE MWAIT(MASK, INS)

IMPLICIT INTEGER (A-Z)

BYTE ERR(100)

BYTE STR(19)
DATA STR/'O', 'E', 'E', 9  ';'' 'E' 'S', 'E' * 1 3' *6'/

ENCODE(8,1,STR(5))MASK

FOPMAT(18)

CALL IBSEOI(STR,19,INS)

10 ISTAT=IBSTS(INS) .AND."377
IF(MOD(ISTAT,64)/32.EQ.1)GOTO 1000

IF(MOD(ISTAT,2).EQ.0)GOTO 10
RETURN

1000 CALL IBSEOI('ERR STRING ?',, INS)
N=IBRECV(ERR, 100, INS)
TYPE *,'ERROR!!!!'
TYPE 1001, (ERR(I),I=I,N,I)

1001 FORMAT(' 'l10Al)
STOP

END

SUBROUTINE CLRESR(OSCADR)

IMPLICIT INTEGER (A-Z)

BYTE STR(80)

CALL IBSEOI('ESR?',,OSCADR)

N=IBRECV (STR, 80, OSCADR)

RETURN

END

SUBROUTINE CLROER(JSCADR)

IMPLICIT INTEGER (A-Z)
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BYTE STR(80)

CALL IBSEOI('OER?',,OSCADR)
N=IBRECV (STR, 80, OSCADR)

RETURN
END
SUBROUTINE GETADO (IVAL, CHAN)
INTEGER IVAL, CHAN

IVAL=IPEEK ("171002)

CALL IPOKE ("171000,CHAN*256+1)

IF(IPEEKB("171000) .LT.0) GOTO I

IVAL=IABS (IPEEK("171002) -2048)

RETURN
END

SUBROUTINE GETRMS (RMS)

rNTEGER I, IVAL

REAL RMS,FACTOR

DATA FACTOR/2.5/ !CONVERT A/D TO MV

RMS=O. 0

DO 1810 I=1,500,1

CALL GETADO (IVAL, 0)

RMS=RMS+IVAL

1810 CONTINUE

RMS= (RMS/500.) *FACTOR

RETURN
END

SUBROUTINE NXTFIL (FILE)

BYTE FILE(15) ,PREFIX

INTEGER I, N, START

DATA N/0

IF (N.GE.99) GOTO 100

IF(N.LE.0)GOTO 200

N=N+I

5 I
=
START

FILE (I) =PREFIX
i=I+1

IFr N.LE. 9) GOTO 10

FILE (I) =N/10+48
I=1+l

FILE(I) =MOD (N, 10) +48
i=I+l

GOTO 20

10 FILE (1) =N+48
I-I+i

20 FILE (I) .
FILE (I+1) =D'

FILE (I+2) ='A'
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FILE (I+3) ='T'
FILE (1+4) =0

CALL OPT(15, 'CURRENT FILE: ',,

CALL OPT(15, 'CURRENT FILE: ',,FILE)
RETURN

100 N=I
PREFIX=PREFIX+ 1
IF (PREFIX.GT. ' Z') PREFIX=' A'

GOTO 5

200 START=l
Do 210 1=1,4,1

210 IF(FILE(I) .EQ. ' : ' ) START=I+1

PREFIX=FILE (START)

N=FILE (START+ 1) -48

IF(FILE(START+2) .EQ. ' ')GOTO 5
N=N*10+ (FILE (START+2) -48)

GOTO 5

END

SUBROUTINE WRTSET (OSCADR, GENADR)

INTEGER OSCADR, GENADR
BYTE STR (80)

WRITE (1, *) '......................

WRITE (1, ) 'GENERATOR SETTINGS'

CALL IBSEOI ('FR?' , , GENADR)

NCHAR=IBECV (STR, 80, GENADR) -2
WRITE (1,*) I FREQ: I , (STR (I),I=1, NCHAR, 1)

CALL IBSEOI ( 'AM?', , GENADR)
NCHAR=IBRECV (STR, 80, GENADR) -2

WRITE(1,)' VOLT: ', (STR(I),I=1,NCHAR, 1)

WRITE(1,*) 'HP SCOPE SETTINGS'

CALL IBSEOI ('CHANNEL 1; RANGE? ',,OSCADR)

NCHAR=IBRECV (STR, 80, OSCADR) -2
WRITE(1,*) ' CHANNEL I RANGE: ', (STR(I),I=1,NCHAR, 1)

CALL IBSEOI ( 'CHANNEL 2; RANGE?', OSCADR)
NCHAR=IBRECV (STR, 80, OSCADR) -2

WRITE(1,*) ' CHANNEL 2 RANGE: ', (STR(I),I=1,NCHAR, 1)

CALL IBSEOI('CHANNEL 3; RANGE?',,OSCADR)

NCHAR= IBRECV (STR, 80, OSCADR) -2
WRITE(1,*) ' CHANNEL 3 RANGE: ', (STR(I),I=1,NCHAR, 1)

CALL IBSEOI ('CHANNEL 4; RANGE?', ,OSCADR)

NCHAR= I BRECV (ST., 80, oScADR) -2
WRITE(1,*) ' CHANNEL 4 RANGE: ', (STR(I),I=I,NCHAR, 1)

CALL ISSEOI ( 'MAIN?', ,OSCADR)
NCHAR=IBRECV (STR, 80, OSCADR) -2

WRITE(1,) ' SAMPLING RATE: ', (STR(1),I=1,NCHAR, 1)

WRITE (1, ) '-----------------------
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RETURN
END
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